In vitro deposition of lysozyme on etafilcon A and balafilcon A hydrogel contact lenses: Effects on adhesion and survival of Pseudomonas aeruginosa and Staphylococcus aureus

2005 ◽  
Vol 28 (3) ◽  
pp. 113-119 ◽  
Author(s):  
Shangtong Zhang ◽  
Roya N. Borazjani ◽  
Joseph C. Salamone ◽  
Donald G. Ahearn ◽  
Sidney A. Crow ◽  
...  
1983 ◽  
Vol 3 (3) ◽  
pp. 128-129 ◽  
Author(s):  
Carol Loeppky ◽  
Eugene Tarka ◽  
E. Dale Everett

Often dialysis -associated peritonitis is treated before the results of cultures are known with a cephalosporin and an aminoglycoside in combination. Because there may be antagonism between the individual drugs in such combinations, we have investigated this possibility through the use of timed, killing curves in dialysate effluent. We tested various cephalosporins and aminoglycosides alone and in combination at concentrations usually instilled into the peritoneum and determined their activity against one strain each of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The results of these in-vitro studies show no evidence of antagonism but rather suggest an additive effect as evidenced by more rapid killing.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maria del Mar Cendra ◽  
Núria Blanco-Cabra ◽  
Lucas Pedraz ◽  
Eduard Torrents

Abstract The coexistence between species that occurs in some infections remains hard to achieve in vitro since bacterial fitness differences eventually lead to a single organism dominating the mixed culture. Pseudomonas aeruginosa and Staphylococcus aureus are major pathogens found growing together in biofilms in disease-affected lungs or wounds. Herein, we tested and analyzed different culture media, additives and environmental conditions to support P. aeruginosa and S. aureus coexistence in vitro. We have unraveled the potential of DMEM to support the growth of these two organisms in mature cocultured biofilms (three days old) in an environment that dampens the pH rise. Our conditions use equal initial inoculation ratios of both strains and allow the stable formation of separate S. aureus microcolonies that grow embedded in a P. aeruginosa biofilm, as well as S. aureus biofilm overgrowth when bovine serum albumin is added to the system. Remarkably, we also found that S. aureus survival is strictly dependent on a well-characterized phenomenon of oxygen stratification present in the coculture biofilm. An analysis of differential tolerance to gentamicin and ciprofloxacin treatment, depending on whether P. aeruginosa and S. aureus were growing in mono- or coculture biofilms, was used to validate our in vitro coculture conditions.


Sign in / Sign up

Export Citation Format

Share Document