scholarly journals Chemical recycling of plastics assisted by microwave multi-frequency heating

2021 ◽  
pp. 100297
Author(s):  
Alberto Frisa-Rubio ◽  
Carlos González-Niño ◽  
Patricia Royo ◽  
Nelson García-Polanco ◽  
David Martínez-Hernández ◽  
...  
2018 ◽  
Vol 5 (3) ◽  
Author(s):  
Mohamad Yusman

Water at the supercritical state is a new process for the chemical recycling. At this thermodynamic state i.e. Pc = 218 atmospheres and Tc = 374oC , water behaves very differently from its everyday temperament and it is a very good solvent for organic components. Experimental studies show that supercritical water can decompose hydrocarbons/polymers and produce useful products like 2-Azacyclotridecanone /lactam-1 from Nylon-12 (batch process). The decomposition process itself was carried out in batch reaction system in order to get more information about product distributions, time dependence, and scale-up possibilities.Keywords: supercritical water, decomposition, batch, polymer, hydrocarbon


Author(s):  
TAKEO HASEGAWA ◽  
YEUN-HWA GU ◽  
HIROAKI USHIBA ◽  
KENSAKU HARA ◽  
SATORU ANDOU ◽  
...  

2021 ◽  
Author(s):  
Elena Gabirondo ◽  
Beatriz Melendez-Rodriguez ◽  
Carmen Arnal ◽  
Jose M. Lagaron ◽  
Antxon Martínez de Ilarduya ◽  
...  

Poly(ethylene furanoate) (PEF) films were first produced using thermo-compression. Thereafter, the chemical recyclability was demonstrated in the presence of a thermally stable organocatalyst followed by its repolymerization.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 530
Author(s):  
Tobias Rieger ◽  
Jessen C. Oey ◽  
Volodymyr Palchyk ◽  
Alexander Hofmann ◽  
Matthias Franke ◽  
...  

More than 200 kg real waste electrical and electronic equipment (WEEE) shredder residues from a German dismantling plant were treated at 650 °C in a demonstration scale thermochemical conversion plant. The focus within this work was the generation, purification, and analysis of pyrolysis oil. Subsequent filtration and fractional distillation were combined to yield basic chemicals in high purity. By means of fractional distillation, pure monocyclic aromatic fractions containing benzene, toluene, ethylbenzene, and xylene (BTEX aromatics) as well as styrene and α-methyl styrene were isolated for chemical recycling. Mass balances were determined, and gas chromatography–mass spectrometry (GC-MS) as well as energy dispersive X-ray fluorescence (EDXRF) measurements provided data on the purity and halogen content of each fraction. This work shows that thermochemical conversion and the subsequent refining by fractional distillation is capable of recycling WEEE shredder residues, producing pure BTEX and other monocyclic aromatic fractions. A significant decrease of halogen content (up to 99%) was achieved with the applied methods.


Procedia CIRP ◽  
2021 ◽  
Vol 98 ◽  
pp. 55-60
Author(s):  
Johanna Hagen ◽  
Selin Erkisi-Arici ◽  
Patrick de Wit ◽  
Felipe Cerdas ◽  
Christoph Herrmann

Sign in / Sign up

Export Citation Format

Share Document