Effect of cafeteria diet and high fat diet on body composition and biochemical parameters in rats

2018 ◽  
Vol 37 ◽  
pp. S269-S270
Author(s):  
Y. Buyukdere ◽  
A. Gulec ◽  
A.Akyol Mutlu
Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Darren Mehay ◽  
Sarah Bingaman ◽  
Yuval Silberman ◽  
Amy Arnold

Angiotensin (Ang)-(1-7) is a protective hormone of the renin-angiotensin system that improves insulin sensitivity, glucose tolerance, and energy balance in obese rodents. Our recent findings suggest that Ang-(1-7) activates mas receptors (MasR) in the arcuate nucleus of the hypothalamus (ARC), a brain region critical to control of energy balance and glucose homeostasis, to induce these positive metabolic effects. The distribution of MasR in the ARC and their role in metabolic regulation, however, is unknown. We hypothesized: (1) MasR are expressed in the ARC; and (2) deletion of ARC MasR leads to worsened metabolic outcomes following high fat diet (HFD). To test this, male and female C57Bl/6J mice were fed a 60% HFD or matched control diet ad libitum for 12 weeks. RNAscope in situ hybridization was performed on coronal ARC sections in rostral-middle-caudal regions to determine percentage of MasR positive neurons (n=5/group). In a second experiment, we assessed body composition and insulin and glucose tolerance in transgenic mice with deletion of MasR in ARC neurons (MasR-flox with AAV5-hsyn-GFP-Cre). RNAscope revealed a wide distribution on MasR-positive cells throughout the rostral to caudal extent of the ARC. The average percentage of MasR positive neurons was increased in females versus males, with HFD tending to increase MasR expression in both sexes (control diet male: 11±2; control diet female: 17±3; HFD male: 15±5; HFD female: 24±2; p sex : 0.030; p diet : 0.066; p int : 0.615; two-way ANOVA). Deletion of MasR in ARC neurons worsened insulin sensitivity in HFD but not control diet females (area under the curve for change in glucose from baseline: -1989±1359 HFD control virus vs. 2530±1762 HFD Cre virus; p=0.016), while fasting glucose, glucose tolerance, and body composition did not change. There was no effect of ARC MasR deletion on metabolic outcomes in control diet or HFD male mice. These findings suggest females have more MasR positive neurons in the ARC compared to males, which may be a sex-specific protective mechanism for glucose homeostasis. While further studies are needed to explore the role of ARC MasR in metabolic regulation, these findings support targeting Ang-(1-7) as an innovative strategy in obesity.


2021 ◽  
Vol 141 (5) ◽  
pp. 95-103
Author(s):  
Pham Thuy Phuong ◽  
Pham Thi Van Anh ◽  
Dang Thi Thu Hien ◽  
Nguyen Trong Thong ◽  
Pham Quoc Binh

This study evaluated the effects of Hamo NK hard capsule on athresclerosis using experimental atherosclerosis model. NewZealand White rabbits were fed a high-fat diet (HFD) containing cholesterol and peanut oil. The animals received oral administration of HFD and Hamo NK hard capsule at two doses of 0.126 and 0.378 g/kg bw/day for 8 consecutive weeks. Blood samples were collected for analyis of biochemical parameters at before treatment, week 4 and week 8. Histopathology assessments of the aortic artery and liver were carried out at the end of the experiment. Hamo NK was effective in reducing serum triglyceride level after 8 weeks of the experiment. In addition, Hamo NK at two doses of 0.126 g/kg b.w and 0.378 g/kg b.w for 8 consecutive weeks did not affect the cholesterol, LDL-C and HDL-C concentrations induced by a HFD. Hamo NK at the dose of 0.126 g/kg bw/day was not only able to decrease significant aortic surface lesions but also capable of managing atherosclerosis plaques formation in aorta; whereas theses activities were not notiaceable at the dose of 0.378 g/kg b.w.


Obesity ◽  
2011 ◽  
Vol 19 (6) ◽  
pp. 1109-1117 ◽  
Author(s):  
Brante P. Sampey ◽  
Amanda M. Vanhoose ◽  
Helena M. Winfield ◽  
Alex J. Freemerman ◽  
Michael J. Muehlbauer ◽  
...  

2014 ◽  
Vol 5 (3) ◽  
pp. 229-239 ◽  
Author(s):  
K. M. Platt ◽  
R. J. Charnigo ◽  
K. J. Pearson

Maternal high-fat diet consumption and obesity have been shown to program long-term obesity and lead to impaired glucose tolerance in offspring. Many rodent studies, however, use non-purified, cereal-based diets as the control for purified high-fat diets. In this study, primiparous ICR mice were fed purified control diet (10–11 kcal% from fat of lard or butter origin) and lard (45 or 60 kcal% fat) or butter (32 or 60 kcal% fat)-based high-fat diets for 4 weeks before mating, throughout pregnancy, and for 2 weeks of nursing. Before mating, female mice fed the 32 and 60% butter-based high-fat diets exhibited impaired glucose tolerance but those females fed the lard-based diets showed normal glucose disposal following a glucose challenge. High-fat diet consumption by female mice of all groups decreased lean to fat mass ratios during the 4th week of diet treatment compared with those mice consuming the 10–11% fat diets. All females were bred to male mice and pregnancy and offspring outcomes were monitored. The body weight of pups born to 45% lard-fed dams was significantly increased before weaning, but only female offspring born to 32% butter-fed dams exhibited long-term body weight increases. Offspring glucose tolerance and body composition were measured for at least 1 year. Minimal, if any, differences were observed in the offspring parameters. These results suggest that many variables should be considered when designing future high-fat diet feeding and maternal obesity studies in mice.


2019 ◽  
Vol 97 (7) ◽  
pp. 611-622 ◽  
Author(s):  
Mohammed M. Heikal ◽  
Ahmed A. Shaaban ◽  
Wagdi F. Elkashef ◽  
Tarek M. Ibrahim

Febuxostat, a highly potent xanthine oxidase inhibitor with an antioxidant effect, inhibits elevated xanthine oxidase, leading to reduction of reactive oxygen species and oxidative stress, the main causes of vascular inflammation in hyperlipidemia. The aim of this study was to test the potential antioxidant and anti-inflammatory effects of febuxostat and (or) stopping a high-fat diet on the biochemical parameters in rabbits with hyperlipidemia induced by a high-fat diet. Male New Zealand rabbits were distributed into 3 groups: a normal control group fed standard chow for 12 weeks and 2 other groups fed a high-fat diet with 1% cholesterol for 8 weeks, and then shifted to standard chow for 4 weeks. During the last 4 weeks, one high-fat diet group received 0.5% carboxymethyl cellulose, whereas the other group was treated with febuxostat (2 mg/kg per day p.o.). Febuxostat significantly lowered low-density lipoprotein cholesterol (“bad” cholesterol) compared to the untreated group (high-fat diet group). Febuxostat also displayed a potent anti-inflammatory and antioxidant activity by decreasing serum levels of lipid peroxidation index, proinflammatory cytokines, and enhancing antioxidant enzyme activity. Stopping the hyperlipidemic diet in the high-fat diet group did not show improvement. These findings indicate the antioxidant and anti-inflammatory effects of febuxostat that may be common mechanisms of the anti-hyperlipidemic effect of this drug. Stopping a hyperlipidemic diet without treatment is not sufficient once injury has occurred.


2015 ◽  
Vol 4 ◽  
Author(s):  
S. Ware ◽  
J.-P. Voigt ◽  
S. C. Langley-Evans

AbstractFetal exposure to maternal undernutrition has lifelong consequences for physiological and metabolic function. Maternal low-protein diet is associated with an age-related phenotype in rats, characterised by a period of resistance to development of obesity in early adulthood, giving way to an obesity-prone, insulin-resistant state in later adulthood. Offspring of rats fed a control (18 % casein) or low-protein (9 % casein; LP) diet in pregnancy were challenged with a high-fat diet at 9 months of age. To assess whether other maternal factors modulated the programming effects of nutrition, offspring were studied from young (2–4 months old) and older (6–9 months old) mothers. Weight gain with a high-fat diet was attenuated in male offspring of older mothers fed LP (interaction of maternal age and diet; P = 0·011) and adipose tissue deposition was lower with LP feeding in both males and females (P < 0·05). Although the resistance to weight gain and adiposity was partially explained by lower energy intake in offspring of LP mothers (P < 0·001 males only), it was apparent that energy expenditure must be influenced by maternal diet and age. Assessment of locomotor activity indicated that energy expenditure associated with physical activity was unlikely to explain resistance to weight gain, but showed that offspring of older mothers were more anxious than those of younger mothers, with more rearing observed in a novel environment and on the elevated plus-maze. The data showed that in addition to maternal undernutrition, greater maternal age may influence development and long-term body composition in the rat.


Sign in / Sign up

Export Citation Format

Share Document