scholarly journals Sediment transport and beach profile evolution induced by bi-chromatic wave groups with different group periods

2016 ◽  
Vol 114 ◽  
pp. 325-340 ◽  
Author(s):  
José M. Alsina ◽  
Enrique M. Padilla ◽  
Iván Cáceres
2011 ◽  
Vol 58 (2) ◽  
pp. 214-227 ◽  
Author(s):  
T.E. Baldock ◽  
J.A. Alsina ◽  
I. Caceres ◽  
D. Vicinanza ◽  
P. Contestabile ◽  
...  

Author(s):  
Yan Ding ◽  
Sung-Chan Kim ◽  
Richard B. Styles ◽  
Rusty L. Permenter

Driven by wave and current, sediment transport alongshore and cross-shore induces shoreline changes in coasts. Estimated by breaking wave energy flux, longshore sediment transport in littoral zone has been studied for decades. Cross-shore sediment transport can be significant in a gentle-slope beach and a barred coast due to bar migration. Short-term beach profile evolution (typically for a few days or weeks) has been successfully simulated by reconstructing nonlinear wave shape in nearshore zone (e.g. Hsu et al 2006, Fernandez-Mora et al. 2015). However, it is still lack of knowledge on the relationship between cross-shore sediment transport and long-term shoreline evolution. Based on the methodology of beach profile evolution modeling, a semi-empirical closure model is developed for estimating phase-average net cross-shore sediment transport rate induced by waves, currents, and gravity. This model has been implemented into GenCade, the USACE shoreline evolution model.


1976 ◽  
Vol 1 (15) ◽  
pp. 75 ◽  
Author(s):  
David G. Aubrey ◽  
Douglas L. Inman ◽  
Charles E. Nordstrom

Beach profiles have been measured at Torrey Pines Beach, California for four years and correlated with tides and accurate spectral estimates of the incident wave field. Characteristic equilibrium beach profiles persist for time spans of up to at least two weeks in response to periods of uniform incident waves. These changes in the beach profiles are primarily due to on-offshore sediment transport which can be related to variations in wave characteristics and tidal phase. The most rapid readjustment of the beach profile occurs during high wave energy conditions coincident with spring tides. Alternatively, the highest berm building is associated with moderate to low waves that coincide with spring tides.


2020 ◽  
Author(s):  
Julio Garcia-Maribona ◽  
Javier L. Lara ◽  
Maria Maza ◽  
Iñigo J. Losada

<p>The evolution of the cross-shore beach profile is tightly related to the evolution of the coastline in both small and large time scales. Bathymetry changes in extreme maritime events can also have important effects on coastal infrastructures such as geotechnical failures of foundations or the modification of the incident wave conditions towards a more unfavourable situation.</p><p>The available strategies to study the evolution of beach profiles can be classified in analytical, physical and numerical modelling. Analytical solutions are fast, but too simplistic for many applications. Physical modelling provides trustworthy results and can be applied to a wide variety of configurations, however, they are costly and time-consuming compared to analytical strategies. Finally,  numerical approaches offer different balances between cost and precision depending on the particular model.</p><p>Some numerical models provide greater precision in the beach profile evolution, but incurring in a prohibitive computational cost for many applications. In contrast, the less expensive ones assume simplifications which do not allow to correctly reproduce significant phenomena of the near-shore hydrodynamics such as wave breaking or undertow currents, neither to predict important features of the beach profile like breaker bars.</p><p>In this work, a new numerical model is developed to reproduce the main features of the beach profile and hydrodynamics while maintaining an affordable computational cost. In addition, it is intended to reduce to the minimum the number of coefficients that the user has to provide to make the model more predictive.</p><p>The model consists of two main modules. Firstly, the already existing 2D RANS numerical model IH2VOF is used to compute the hydrodynamics. Secondly, the sediment transport model modifies the bathymetry according to the obtained hydrodynamics. The new bathymetry is then considered in the hydrodynamic model to account for it in the next time step.</p><p>The sediment transport module considers bedload and suspended transports separately. The former is obtained with empirical formulae. In the later,the distribution of sediment concentration in the domain is obtained by solving an advective-diffusive transport equation. Then, the sedimentation and erosion rates are obtained along the seabed.<br>Once these contributions are calculated, a sediment balance is performed in every seabed segment to determine the variation in its level.</p><p>With the previously described strategy, the resulting model is able to predict not only the seabed changes due to different wave conditions, but also the influence of this new bathymetry in the hydrodynamics, capturing features such as the generation of a breaker bar, displacement of the breaking point or variation of the run-up over the beach profile. To validate the model, the numerical results are compared to experimental data.</p><p>An important novelty of the present model is the computational effort required to perform the simulations, which is significantly smaller than the one associated to existing models able to reproduce the same phenomena.</p>


1977 ◽  
Vol 14 (8) ◽  
pp. 1906-1915 ◽  
Author(s):  
J. R. Keeley

A series of profiles across Martinique Beach, Nova Scotia, surveyed at monthly intervals between April and October, 1974, showed the formation and subsequent disappearance of large cuspate projections on the beach face. A theoretical model of the distribution of longshore currents on the beach was used to predict the expected positions of convergences and divergences in the longshore sediment transport. The observed projections were found to occur in positions of convergence of waves generated by the southeasterly winds, dominant in the late spring. The disappearance of the cusps was associaled with the seasonal veering of wind direction to the southwest as summer advanced.The size of the seasonal changes in beach profile suggests that the morphology of Martinique Beach is controlled primarily by storm waves.


2011 ◽  
Vol 1 (32) ◽  
pp. 30
Author(s):  
Ahmad Shanehsazzadeh ◽  
Patrick Holmes

Erosion and accretion of the beach face and consequently the movement of the coastline are the direct result of net sediment transport in the swash zone. Different models have been introduced in order to predict hydrodynamic parameters and, thereafter, movement of particles. However, the capability and comprehensiveness of the models in different conditions are still questionable. In reviewing models established for sediment transport in the swash zone, one can easily conclude that in the most cases the transport of bed load has been predicted traditionally by the application of quasi-steady formula. Scientists have identified many of the important physical processes driving sediment transport throughout the swash zone, but a detailed description of the small-scale sediment dynamics is still far from complete. In this paper the behaviour of coarse sediment particles in the bed load mode of transport in response to the flow regime experienced in the swash zone are investigated. Accordingly, a model called event-based model is introduced for prediction of the beach profile change, and the results of the model are compared with some laboratory data. The comparison between the results of the model and measured beach profile in the laboratory reveals that the results of the model developed in the present study on the basis of the event-based concept are very promising, particularly in the range of flow for which the behaviour of sediment particles is more accurately understood.


Sign in / Sign up

Export Citation Format

Share Document