Overview of analytics needed to support a robust gene therapy manufacturing process

2021 ◽  
Vol 20 ◽  
pp. 100339
Author(s):  
J. Phillip Ramsey ◽  
Santoshkumar L. Khatwani ◽  
Min Lin ◽  
Rajeev Boregowda ◽  
Richard Surosky ◽  
...  
Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-21
Author(s):  
Michael Grimley ◽  
Monika Asnani ◽  
Archana Shrestha ◽  
Sydney Felker ◽  
Carolyn Lutzko ◽  
...  

Introduction: ARU-1801 is a gene therapy consisting of autologous CD34+ hematopoietic stem cells and progenitors (HSCPs) transduced with a lentiviral vector (LV) encoding a modified γ-globinG16D gene. Preclinical studies in SCD mice have shown that g-globinG16D binds α-globin with higher affinity; hence, the g-globinG16D LV produces 1.5-2x more HbF/vector copy number (VCN) than a g-globin LV. Preliminary studies also show greater reduction in reticulocytes in SCD mice expressing HbFG16D compared to those expressing the same level of HbF, suggesting that HbFG16D may have a more potent anti-sickling effect than HbF. We hypothesized a high potency anti-sickling globin would allow ARU-1801 to be effective with reduced intensity conditioning (RIC). RIC would result in lower toxicities and resource utilization compared to myeloablative approaches, allowing access of gene therapy to a broader group of SCD patients. We previously reported early data from patient 1 (P1) and 2 (P2) in the ongoing Phase 1/2 study (NCT02186418), who were treated with drug product (DP) from the initial ARU-1801 manufacturing process (Process I). We now present the long-term data on these patients and early data from P3, the first patient treated with our new manufacturing process (Process II). Methods: Adults with severe SCD, as defined by recurrent vaso-occlusive events (VOE) and acute chest syndrome deemed eligible were enrolled. Manufacturing process improvements in Process II included optimized timing of HSCP collection after plerixafor mobilization, LV production and improved HSCP transduction. Prior to DP infusion, all patients received a single dose of IV melphalan (140 mg/m2 BSA) and were weaned off transfusions 3-6 months after DP infusion. Patients were monitored for safety, engraftment, VCN, anti-sickling Hb (ASG) expression, and hematological and clinical manifestations of SCD. Levels of ASG (including HbFG16D) are presented as fractions of endogenous Hb. Results: As of 28 July 2020, data from 3 patients treated with ARU-1801 are available. P1 (34yr old) has HbSβ0- and P2 (24yr old) has HbSβ+ thalassemia (2-3% HbA). Both have 30 months (mo) post-transplant (PT) follow up. P3 (19yr old) has HbSS genotype with 6 mo PT follow up. ARU-1801 demonstrated a favorable safety profile with no treatment-related adverse events to date. Time to neutrophil engraftment (ANC ≥500) was 9, 7, and 7 days PT, and time to platelet recovery (Plt >50,000) was 12, 7, and 6 days PT, in P1, P2, and P3, respectively. Figure 1 shows HSPC dose, conditioning exposure and gene transfer; Figure 2 shows ASG over time. Using Process I, P1 has shown stable expression of 20% HbFG16D, 31% ASG and 31%à64% F-cells over 2.5 years, despite a low DP VCN of 0.2 and low HSPC dose of 1.4 x106 cell/kg. P2 received a higher cell dose of 7.1 x106 cell/kg with a DP VCN of 0.47 but had below target melphalan exposure, likely due to rapid clearance from hyperfiltration (GFR= 200 mL/min/1.73m2). Despite lower engraftment and HbFG16D level, P2 maintains stable total ASG of 22% at 30 mo due to a compensatory increase in HbF. Using Process II, P3 received DP of 6.8 x106 cells/kg with a VCN of 1.0, and demonstrated an engrafted VCN of 0.74, 71% F-cells and 91% F-reticulocytes at 6 mo. As P3 is being weaned off transfusions, HbFG16D is progressively rising, showing the selective advantage to HbFG16D-containing RBCs. P1 and P2 have maintained improvements in VOEs, no VOE in P3 so far (data will be presented). Conclusion: We show that engraftment of ARU-1801 and amelioration of disease is possible with RIC using IV melphalan, with persistent stable ASG expression and meaningful improvement in VOEs in P1 and P2. P1 shows stable HbFG16D and high ASG despite low, albeit stable VCN. P2 had lower HSCP engraftment, which we hypothesize was due to below target melphalan exposure. Nevertheless, significant clinical benefit was observed in P2 due to stable ASG of 22% at mo 30. It is likely that the presence of this amount of HbFG16D has provided enough ASG to prevent sickling/ineffective erythropoiesis, resulting in the preferential survival of HbF+HbFG16D-expressing RBC. Process II DP in P3 resulted in 2-4X higher engraftment of transduced HSCPs at 6 mo. Additional process enhancements are under development for future treated patients. ARU-1801, administered with RIC, holds significant promise for achieving durable responses with a favorable safety profile in patients with severe SCD. Disclosures Asnani: Aruvant Sciences: Research Funding; Avicanna Ltd.: Research Funding. Lutzko:Aruvant Sciences: Patents & Royalties: pre-clinical vector development. Lo:Aruvant Sciences: Current Employment. Little:Aruvant Sciences: Current Employment. McIntosh:Aruvant: Current Employment, Current equity holder in private company. Malik:Aruvant Sciences, Forma Therapeutics, Inc.: Consultancy; Aruvant Sciences, CSL Behring: Patents & Royalties. OffLabel Disclosure: Plerixafor - stem cell mobiliziation Melphalan - chemotherapy conditioning pre autologous transplant with ARU-1801


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1173-1173
Author(s):  
Brigit E. Riley ◽  
Jeff Boonsripisal ◽  
Alicia Goodwin ◽  
Dominique Cartier ◽  
Eudean Garces ◽  
...  

Abstract Hemophilia A, which is caused by a mutation in the Factor 8 (F8) gene resulting in a deficiency or lack of the Factor VIII (FVIII) protein, is the most common inherited bleeding disorder in humans with an estimated worldwide incidence of half a million people. The disorder is X-linked and occurs in approximately 1 in 5,000 males; however there is also a growing appreciation of the impact on carrier females having a single mutant allele, with at least 10% of hemophilia A female carriers having less than normal clotting activity. Even modest increases in Factor V III activity (>1% of normal) can have a positive impact on patient lives, thus making the disease an ideal candidate for liver-directed gene therapy. Recombinant AAV (rAAV) has been used extensively for nearly 20 years as a gene therapy vector in preclinical and clinical studies where rAAV delivery to non-dividing tissues such as liver, brain and muscle affords stable, long-term transgene expression. However, there has been a lag in the clinical translation of a rAAV gene therapy approach for Hemophilia A/human F8 (hF8) compared to Hemophilia B/human Factor 9 due to poor yields of rAAV encoding a F8 transgene at clinical scale, and a requirement for large doses of rAAV F8 vector to achieve therapeutically relevant levels of circulating human FVIII (hFVIII), with the attendant risk of inducing an AAV-directed immune response requiring transient immunosuppression. To address these issues we optimized a rAAV F8 cDNA vector cassette to improve both virus yields and liver-specific hFVIII expression. The rAAV F8 cDNA vector cassette optimization required multi-factorial modifications to the liver-specific promoter module, hF8 transgene, synthetic polyadenylation signal and vector backbone sequence. This iterative process resulted in improved vector yields at research scale and greater than five-fold improvement in vector yields at clinical scale using our proven manufacturing process. Administration of the optimized rAAV hF8 cDNA packaged in serotype AAV2/6 at a dose of ~7.2E+12 vg/kg to both wild type and Hemophilia A mice resulted in robust circulating hFVIII levels and activity (levels in wild type mice were 241.6% of normal, and activity in Hemophilia A mice were 330.9% of normal). An analysis of hF8 mRNA levels in different tissues following dosage with our optimized vector demonstrated that hF8 expression from the modified promoter module was restricted to the liver. Notably there was a striking impact on hemostasis in the Hemophilia A mice treated with the optimized rAAV hF8 cDNA, with a reduction in bleeding time from 38.3 minutes to 2.5 minutes in treated mice (n = 12, p-value < 0.0001), which is in line with bleeding times in wild type mice. Initial studies in non-human primates (NHPs) resulted in supraphysiological levels of circulating hFVIII with mean peak values of 400-600% of normal levels. A follow up dose-ranging study was performed in NHPs with a rAAV2/6 F8 cDNA vector manufactured using our GMP clinical manufacturing process. Administration of vector doses ranging from 6E+11 vg/kg to 6E+12 vg/kg resulted in therapeutic circulating levels of hFVIII that were 5% - 229% of normal levels. The peak circulating hFVIII levels achieved in this dose-ranging study using GMP clinical-scale vector exceeds the levels previously reported in NHPs by several fold on an AAV vector dose basis. The high potency of this enhanced rAAV F8 cDNA cassette could significantly reduce the dose required to achieve therapeutically relevant levels in human subjects and reduce the potential of developing immune responses to AAV capsid requiring immunosuppression. Disclosures Riley: Sangamo BioSciences Inc: Employment. Boonsripisal:Sangamo BioSciences Inc: Employment. Goodwin:Sangamo BioSciences Inc: Employment. Garces:Sangamo BioSciences Inc: Employment. Ballaron:Sangamo BioSciences Inc: Employment. Tran:Sangamo BioSciences Inc: Employment. Kang:Sangamo BioSciences Inc: Employment. Zhang:Sangamo BioSciences Inc: Employment. Meyer:Sangamo BioSciences Inc: Employment. Greengard:Sangamo BioSciences Inc: Employment. Surosky:Sangamo BioSciences Inc: Employment. Ando:Sangamo BioSciences Inc: Employment. Lillicrap:bayer: Research Funding; biogen: Research Funding; CSL: Research Funding; Octapharma: Research Funding; Sangamo Biosciences Inc: Research Funding. Nichol:Sangamo BioSciences Inc: Employment. Holmes:Sangamo BioSciences Inc: Employment.


2021 ◽  
Vol 3 (3) ◽  
pp. 1-4
Author(s):  
Kaiser Jay Aziz ◽  

Genome editing can be applied to various areas of medical diagnosis and treatments. Gene therapy pre-market applications comprise of systematically assessing a product’s design controls, manufacturing process controls, and proposed protocols for post-marketing surveillance. Quality risk management principles have been described in various FDA regulatory guidances for several aspects of good manufacturing practices (GMPs) such as several stages of process validation and verification in the genome product’s life cycle including critical quality attributes (CQAs) and monitoring critical process parameters (CPPs). A CPP is defined as a process parameter whose variability has an impact on a CQA of genome product and, therefore, should be monitored or controlled to ensure that the manufacturing process produces an end product of the desired quality. FDA’s mission is to facilitate the premarket review and evaluation of new genomic products for clinical use. The FDA guidances emphasize a quality management approach to the design of studies by providing oversight and objective review based on risk-benefit analysis of new genomic products. FDA reviews, evaluates, verifies and validates the implementation of the regulatory design-control requirements which are applied to the control genomic product’s quality throughout the total product life cycle (TPLC) [1-5].


Author(s):  
M. Shlepr ◽  
C. M. Vicroy

The microelectronics industry is heavily tasked with minimizing contaminates at all steps of the manufacturing process. Particles are generated by physical and/or chemical fragmentation from a mothersource. The tools and macrovolumes of chemicals used for processing, the environment surrounding the process, and the circuits themselves are all potential particle sources. A first step in eliminating these contaminants is to identify their source. Elemental analysis of the particles often proves useful toward this goal, and energy dispersive spectroscopy (EDS) is a commonly used technique. However, the large variety of source materials and process induced changes in the particles often make it difficult to discern if the particles are from a common source.Ordination is commonly used in ecology to understand community relationships. This technique usespair-wise measures of similarity. Separation of the data set is based on discrimination functions. Theend product is a spatial representation of the data with the distance between points equaling the degree of dissimilarity.


2001 ◽  
Vol 120 (5) ◽  
pp. A349-A349
Author(s):  
J TSENG ◽  
F FARNEBO ◽  
O KISKER ◽  
C BECKER ◽  
C KUO ◽  
...  

2005 ◽  
Vol 173 (4S) ◽  
pp. 300-300
Author(s):  
Sreedhar Sagi ◽  
Lutz Trojan ◽  
Peter Aiken ◽  
Maurice S. Michel ◽  
Thomas Knoll

2005 ◽  
Vol 173 (4S) ◽  
pp. 214-214
Author(s):  
Shuji Terao ◽  
Toshiro Shirakawa ◽  
Kazumasa Goda ◽  
Sadao Kamidono ◽  
Akinobu Gotoh

Sign in / Sign up

Export Citation Format

Share Document