Phosphorous-Nitrogen flame retardants engineering MXene towards highly fire safe thermoplastic polyurethane

2022 ◽  
pp. 101055
Author(s):  
Chuan Liu ◽  
Dong Yang ◽  
Mengnan Sun ◽  
Guojun Deng ◽  
Binghao Jing ◽  
...  
2007 ◽  
Vol 15 (7) ◽  
pp. 591-596 ◽  
Author(s):  
Meifang Liu ◽  
Xing Huang ◽  
Yuan Liu ◽  
Qi Wang

Intumescent flame retardants are important halogen-free products used in polyethylene. However, their thermal stability and water-resistance are major shortcomings. In this work, a composite charring agent, pentaerythritol (PER) encapsulated by thermoplastic polyurethane (TPU) was used in an intumescent system to improve the flame retardancy of high density polyethylene (HDPE). The encapsulation of macromolecular charring agent TPU can effectively suppress the esterification reaction of PER and acid source in the intumescent system during processing. It can also remarkably decrease the water absorption, thus producing flame retardant HDPE with high performance. The synergistic effects of other common flame retardants including melamine phosphate, melamine polyphosphate and ammonium polyphosphate with TPU-encapsulated PER, as well as the ratio of charring agent to acid source were investigated so as to determine the optimum formula for use in HDPE. The flame retardant HDPE can reach limiting oxygen index of 33 and achieve UL-94 V-0 rating at 3.2 mm thickness when the ratio of MP/composite charring agent is 2:1 w/w.


Author(s):  
Pham Thi Thuy Linh ◽  
Hoang Thi Dong Quy

In order to improve fire performance of thermoplastic polyurethane (TPU) material, halogen-free flame retardants (triphenylphosphate- TPP and diamonium hydrogen phosphate-DAP) were studied in an attempt to obtain UL-94V ratings. The fire behaviors and thermal stability properties were evaluated using UL-94 vertical test and thermogravimetric analysis (TGA). The UL- 94V results showed that V-0 ratings were achieved at 5 wt% of DAP or 7.5 wt% loading of TPP. The incorporation of these flame retardant (FR) increases the flame retardant properties as well as the amounts of charred residues protecting the mixture from further degradation. This assertion could be accepted when observing that the char residual of TPU/DAP mixture at 500–600oC was much higher than that of neat TPU. The char layer limited the amount of fuel available and insulate the underlying composite material from the flame and, thus, make further degradation more difficult. The mechanism of flame retardants was also discussed in this study.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 340
Author(s):  
Shaolin Lu ◽  
Botao Shen ◽  
Xudong Chen

Nitrogen-containing flame retardants have been extensively applied due to their low toxicity and smoke-suppression properties; however, their poor charring ability restricts their applications. Herein, a representative nitrogen-containing flame retardant, polyheptanazine, was investigated. Two novel, cost-effective phosphorus-doped polyheptazine (PCN) and cobalt-anchored PCN (Co@PCN) flame retardants were synthesized via a thermal condensation method. The X-ray photoelectron spectroscopy (XPS) results indicated effective doping of P into triazine. Then, flame-retardant particles were introduced into thermoplastic polyurethane (TPU) using a melt-blending approach. The introduction of 3 wt% PCN and Co@PCN could remarkably suppress peak heat release rate (pHRR) (48.5% and 40.0%), peak smoke production rate (pSPR) (25.5% and 21.8%), and increasing residues (10.18 wt%→17.04 wt% and 14.08 wt%). Improvements in charring stability and flame retardancy were ascribed to the formation of P–N bonds and P=N bonds in triazine rings, which promoted the retention of P in the condensed phase, which produced additional high-quality residues.


Sign in / Sign up

Export Citation Format

Share Document