Effect of zinc acetate dihydrate concentration on morphology of ZnO seed layer and ZnO nanorods grown by hydrothermal method

2020 ◽  
Vol 38 ◽  
pp. 100312
Author(s):  
Suvindraj Rajamanickam ◽  
Sabah M. Mohammad ◽  
Z. Hassan
2016 ◽  
Vol 675-676 ◽  
pp. 237-240
Author(s):  
Nontakoch Siriphongsapak ◽  
Somyod Denchicharoen ◽  
Pichet Limsuwan

In this work, Zinc oxide (ZnO) thin films were deposited on silicon and glass substrates using spin-coating method with different concentrations of precursor (zinc acetate dihydrate) and stabilizer (monoethanolamine). The concentrations of zinc acetate dihydrate and monoethanolamine in isopropanol were varied from 6 mM to 500 mM. Subsequently, the substrate with ZnO thin film as a seed layer was used to grow ZnO nanostructures by hydrothermal process with the same concentration of precursor (zinc nitrate hexahydrate), temperature, and time for each growth. The samples were characterized by field-emission scanning electron microscopy (FESEM), X-rays diffractometer (XRD), and UV-visible spectrophotometer (UV-vis) to study morphology, crystallographic structure, and optical property, respectively. The results showed that particle size, crystallinity, and transmittance of seed layers were changed with increasing concentrations of spin-coated precursor. Furthermore, the nanostructures were found that higher precursor concentration of seed layers affected the formation of ZnO nanorods to be nanosheets.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. Kashif ◽  
U. Hashim ◽  
M. E. Ali ◽  
Syed M. Usman Ali ◽  
M. Rusop ◽  
...  

The morphology and electrooptical properties of ZnO nanorods synthesized on monoethanolamine-based seed layer and KOH-based seed layer were compared. The seed solutions were prepared in monoethanolamine in 2-methoxyethanol and potassium hydroxide in methanol, respectively. Zinc acetate dihydrate was as a common precursor in both solutions. The nanorod-ZnOs were synthesized via the spin coating of two different seed solutions on silicon substrates followed by their hydrothermal growth. The scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence (PL), and Raman studies revealed that the ZnO nanorods obtained from monoethanolamine-based seed layer had fewer defects, better crystals, and better alignment than those realized via KOH-based seed layer. However, the current-voltage (I-V) characteristics demonstrated better conductivity of the ZnO nanorods obtained via KOH-based seed layer. The current measured in forward bias was 4 mA and 40 μA for ZnO-nanorods grown on KOH-based seed layer and monoethanolamine-based with the turn on voltage of approximately 1.5 V and 2.5 V, respectively, showing the feasibility of using both structures in optoelectric devices.


Author(s):  
Eric Kwabena Droepenu ◽  
Ebenezer Aquisman Asare ◽  
Boon Siong Wee ◽  
Rafeah Binti Wahi ◽  
Frederick Ayertey ◽  
...  

Abstract Background Various parts of Anacardium occidentale plant possess curative qualities like antidiabetic, anti-inflammatory, antibacterial, antifungal, and antioxidant. Aqueous extract of this plant leaf was used in biosynthesizing zinc oxide (ZnO) nanoaggregates using two precursors of zinc salt (zinc acetate dihydrate [Zn(CH3COO)2∙2H2O] and zinc chloride [ZnCl2]). The synthesized ZnO samples were used in a comparative study to investigate the antibacterial activity against selected Gram-positive and Gram-negative microbes [Staphylococcus aureus, Exiguobacterium aquaticum (Gram +ve) and Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii (Gram −ve)]. The synthesized ZnO nanoaggregates from the two precursors were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive x-ray spectroscopy (EDX) techniques. Results Micrographs of SEM and TEM confirmed nanoparticles agglomerated into aggregates. While spherical nanoaggregates were identified in samples prepared from Zn(CH3COO)2∙2H2O, flake-like structures were identified in samples synthesized from ZnCl2. Particle size determined by TEM was 107.03 ± 1.54 nm and 206.58 ± 1.86 nm for zinc acetate dihydrate and zinc chloride precursors respectively. ZnO nanoaggregate synthesized using zinc acetate as precursor gave higher antibacterial activity than its counterpart, zinc chloride with K. pneumonia recording the highest inhibition zone of 2.08 ± 0.03 mm (67.53%) whereas S. aureus recorded the least inhibition zone of 1.06 ± 0.14 mm (34.75%) for ZnO nanoaggregate from zinc chloride precursor. Also, antibacterial activity increases with increasing concentration of the extract in general. However, A. baumannii, E. aquaticum, and K. pneumoniae did not follow the continuity trend with regards to the 250 ppm and 500 ppm concentrations. Conclusion Biosynthesis of ZnO nanoaggregates using aqueous extract of A. occidentale leaf from zinc acetate dihydrate and zinc chloride as precursors was successful with the formation of nanospheres and nanoflakes. The study suggested that A. occidentale sp. could be an alternative source for the production of ZnO nanoparticles and are efficient antibacterial compounds against both Gram +ve and Gram −ve microbes with its promising effect against infectious bacteria.


2011 ◽  
Vol 43 (6) ◽  
pp. 980-982 ◽  
Author(s):  
James T. Hughes ◽  
Alexandra Navrotsky

2012 ◽  
Vol 27 (11) ◽  
pp. 1445-1451 ◽  
Author(s):  
Mehmet Can Akgun ◽  
Yunus Eren Kalay ◽  
Husnu Emrah Unalan

Abstract


2019 ◽  
Vol 26 (03) ◽  
pp. 1850158 ◽  
Author(s):  
MARYAM MOTALLEBI AGHGONBAD ◽  
HASSAN SEDGHI

Zinc Oxide thin films were deposited on glass substrates by sol–gel spin coating method. Zinc acetate dihydrate, 2-methoxyethanol and monoethanolamine were used as precursor, solvent and stabilizer, respectively. Zinc acetate dihydrate was used with different molar concentrations of 0.15, 0.25 and 0.5 M. Optical properties of ZnO thin films such as dielectric constants, absorption coefficient, Urbach energy and optical band gap energy were calculated by spectroscopic ellipsometry (SE) method. The effect of zinc acetate concentration on optical properties of ZnO thin films is investigated. ZnO thin film with Zn concentration of 0.25 M had the highest optical band gap. Wemple DiDomenico oscillator model was used for calculation of the energy of effective dispersion oscillator, the dispersion energy, the high frequency dielectric constant, the long wavelength refractive index and the free carrier concentration.


Sign in / Sign up

Export Citation Format

Share Document