Highly cationic starch and “anionic trash” for optimal filler retention and paper strength?

Author(s):  
Roger Nyström ◽  
Jarl B. Rosenholm
2020 ◽  
Vol 71 (5) ◽  
pp. 479-490 ◽  
Author(s):  
Wei Shang ◽  
Haoran Han ◽  
Hunan Liang

In this work, diatomite particles were modified to improve the bondability of diatomite particles with pulp fibers and filler retention via a complex of cationic starch-sodium hexametaphosphate coating method. The particle size, FTIR spectroscopy characteristic and morphology of the resulting modified diatomite were studied to confirm the successful modification. The SEM results illustrated that the surface of modified diatomite particles was covered by the complex coatings. The coating efficiency of the complex of cationic starch-sodium hexametaphosphate on diatomite surface was up to 98%. Compared with the handsheet filled unmodified diatomite, the handsheet filled with modified diatomite had higher strength properties and lower bulk. When cationic starch dosage was 7%, and filler dosage was 25% , the resulting tensile strength of filled modified diatomite handsheet was 22.1% higher than the handsheet filled unmodified diatomite. Furthermore, with the filler loading of 30%, compared with that of unmodified diatomite, filler retention of modified diatomite was increased by 20.4%. The larger particle size and higher zeta potential of modified diatomite were benefitial to increase retention of modified diatomite filler.


2020 ◽  
Vol 35 (1) ◽  
pp. 89-95
Author(s):  
Nannan Chen ◽  
Lijun Wang ◽  
Junchao Wen ◽  
Xianping Yao ◽  
Wenyan Zhao

AbstractIncreasing the filler content of sheet tends to decrease filler retention and paper strength properties. To overcome this problem and make better use of fillers, development of new methods on filler modification has never been stopped. In this study, filler modification was carried out by sequentially adding an anionic polyacrylamide, a cationic starch and a cationic polyacrylamide. It is believed that in this process, multiple polyelectrolyte complexes are formed which can not only encapsulate filler particles but also preflocculate the particles. The results showed that, compared to the single preflocculation treatment, the sequential encapsulation and preflocculation (SEP) treatment brought significantly larger particle size and higher surface charge potential of the filler, thus higher filler retention was achieved. When the modified fillers were used for papermaking and paper ash contents were controlled at the same level, the SEP modification was better in improving the tensile index, internal bond strength and tearing index of paper than the single preflocculation method, in addition, it maintained better paper formation, caused insignificant change on opacity of paper. It is believed that this newly developed SEP method is worthy of being applied to industrial scales in making various grades of filled paper.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 653-664
Author(s):  
IGNACIO DE SAN PIO ◽  
KLAS G. JOHANSSON ◽  
PAUL KROCHAK

Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and bentonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Hua Chen ◽  
Jian Lou ◽  
Fei Yang ◽  
Jia-nan Zhou ◽  
Yan Zhang ◽  
...  

In this study, pulping conditions for kraft pulping of bamboo residues were investigated, predominantly focusing on cooking temperature and time during pulping. Oxalic acid and cationic starch were used for the modification of natural stellerite, and the use of modified stellerite for preparing filter paper for PM2.5 filtration was investigated. The optimal pulping technology of bamboo residues was established based on the following experimental parameters: liquor ratio of 1 : 5.5, cooking temperature of 160°C, and a holding time of 2 h. Modification by oxalic acid resulted in the promotion of pore formation at the stellerite surfaces and induced the microscopic changes. Nevertheless, paper strength remained practically unchanged after the addition of fillers, indicating that the cationic starch preblend method is a promising technique for papermaking because it enhances the strength properties of paper. With the variation in the addition of modified stellerite from 3 to 15%, while simultaneously maintaining the basis weight constant at 60 gm−2, the filtration efficiency of paper sheets first increased and then decreased later; thus the optimum stellerite content was found to be 9%. Filtration efficiency was suggested to be affected by gas flowing velocity.


2011 ◽  
Vol 236-238 ◽  
pp. 1112-1115
Author(s):  
Hong Wei Zhang ◽  
Guo Ping Zheng

In the presented work, a series of the phosphate amphoteric cassava starch were synthesized by a two-step semi-dry process with 3-chloro-2-hydroxypropyltrimethyl ammonium chloride (CTA) as the cationic reagent and phosphate mixture as the anionic reagent. The structure of the amphoteric starch was characterized by FTIR and XRD. The reinforcing effects of the amphoteric starch on the secondary fiber were also studied. The results indicated that the reaction occurred not only in the amorphous region, but also in its crystalline region. When the cationic starch reacted with different amount of phosphates, the degree of cation substitution (DSc) of products was decreased with the dosage of the phosphates. When cationic starch with different DSc reacted with the same amount of phosphates, the degree of anion substitution (DSa) of products was decreased with the DSc. All the amphoteric starch showed reinforcing effect on the secondary fiber. The No. 7 sample showed better reinforcing effects on paper strength due to its higher total degree of substitution (0.095), proper DSa/DSc ratio (DSc = 0.067, DSa = 0.028) and interior modification of the starch granule. Compared with the control sample, the secondary fiber paper with 1.0 wt % (relative to dried pulp) of 7# modified starch showed 23.5%, 20.3% and 29.4% increases in tensile index, tearing index, and burst index, respectively.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (4) ◽  
pp. 17-26 ◽  
Author(s):  
VIPUL SINGH CHAUHAN ◽  
NISHI KANT BHARDWAJ

Mineral fillers are added during papermaking to improve the optical and printing properties of paper and decrease energy costs. Filler loading using conventional approaches has some disadvantages, such as reduction in paper strength. The finer filler, the more the strength loss. Several methods and materials have been reported to overcome or alleviate the same, but with higher costs. Our approach provides an economically viable solution to the problem, using conventional papermaking materials. Talc filler of different particle sizes, preflocculated using different doses of cooked amphoteric starch, were used for papermaking. Relatively higher filler retention, paper strength, and hydrophobicity of paper were obtained with preflocculated talc compared to native talc. The optical properties of paper were unchanged on the loading of similar talc after preflocculation. The preflocculated talc of finer particle size provided higher opacity at similar ash, as well as paper strength, than the native talc of coarser size.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (07) ◽  
pp. 395-403 ◽  
Author(s):  
Matthew Rice ◽  
Lokendra Pal ◽  
Ronalds Gonzalez ◽  
Martin Hubbe

Nanofibrillated cellulose (NFC) treated with cationic starch was evaluated as a bonding system to permit lower degrees of refining and lower apparent density of high-mass handsheets made from bleached kraft pulp. Mixed pulp (70% hardwood, 30% softwood) was formed into sheets with the optional addition of 5% by dry mass of NFC. The default addition of NFC was compared with a system in which the NFC had been pretreated either with cationic starch (at various levels) or optionally followed by colloidal silica. Comparative tests also were carried out with separate addition of cationic starch to the main furnish. Unrefined fibers (514 mL CSF) were compared with low-refined (473 mL CSF) and high-refined (283 mL CSF) pulp mixtures. The NFC that had been pretreated with cationic starch at a high level was especially effective at boosting the tensile strength and stiffness of sheets prepared from pulp that had been refined at a low level, thus achieving improved strength at relatively low apparent density (high bulk) of the handsheets. The results support a strategy, for applicable grades of paper, of using cationic starchpretreated NFC in place of refining energy applied to the main fiber furnish. It was further established that colloidal silica can be employed as a further pretreatment of the cationic starch–treated NFC as a means of promoting dewatering in the combined system.


Author(s):  
Do-Chim Choi ◽  
Eun-Yeon Choi ◽  
Jong Myoung Won ◽  
Byoung-Uk Cho

TAPPI Journal ◽  
2020 ◽  
Vol 19 (6) ◽  
pp. 281-290
Author(s):  
MARTIN A. HUBBE ◽  
LOKENDRA PAL ◽  
AHSEN EZEL BILDIK DAL

Ordinary rosin sizing agents are mixtures of resin acids that include abietic acid and related com-pounds obtained from softwoods such as pine. Fatty acids, which are another byproduct of the kraft pulping of soft-wood species, also may have hydrophobic effects, but their use as sizing agents has seldom been considered. In the current study, abietic acid and oleic acid, in the absence of other components, were first modified by reaction with maleic acid anhydride. Then, the maleated derivatives (maleated oleic acid [MOA] and maleated abietic acid [MAA]), which were emulsified with cationic starch at the 1:1 and 3:2 ratio, respectively, were added to fiber furnish containing aluminum sulfate (papermaker’s alum). The prepared sheets were dried with a rotating drum on one side at 100°C at low pressure to cure the sizing agents. The chemical, optical strength, and absorption properties were measured. The presence of the sizing material was confirmed using time of flight secondary ion mass spectrometry (ToF-SIMS), and the retention of the sizing agent on fibers was supported by evidence of hydrocarbons on the paper surface. In addition to achieving sufficient water resistance features with MAA, a lesser hydrophobic character was obtained when using MOA. Compared to commercial applications, relatively large amounts of sizing agent were used to obtain a sufficient sizing degree. The MOA required 5% addition to achieve a similar sizing degree as MAA at the 2% level. The sizing treatments also resulted in substantial increases in tensile index value. Since cationic starch was used in the formulation of the sizing agents, the increase in tensile index may have been due to the influence of cationic starch. Contributions to paper strength from a combination of ionic complexation and mutual association of hydrophobic groups is also proposed. Depending on the amount of sizing agent, the yellowness increased, especial-ly when sizing with MOA.


Sign in / Sign up

Export Citation Format

Share Document