Yielding to stress in pickering emulsions at dilute and intermediate volume fractions

Author(s):  
Benjamin C. Munro ◽  
Simon B. Hall ◽  
Catherine P. Whitby
2019 ◽  
Vol 9 (19) ◽  
pp. 4044 ◽  
Author(s):  
Upinder Bains ◽  
Rajinder Pal

An in-situ method of measuring the viscosity of unstable and stable emulsions on a continuous basis under agitation conditions was developed and utilized to investigate the viscous behaviour of surfactant-stabilized and nanoparticles-stabilized oil-in-water (O/W) emulsions at different volume fractions of the dispersed phase (oil). The stability characteristics (droplet size and phase-separation) of emulsions under quiescent conditions were also determined with the aging of emulsions. Emulsions are Newtonian at low volume fractions of the dispersed phase. At high concentrations of the dispersed phase, emulsions behave as non-Newtonian shear-thinning fluids. The nanoparticles-stabilized (Pickering) emulsions are unstable in comparison with the surfactant-stabilized emulsions. The droplet sizes of Pickering emulsions increase rapidly with aging, whereas the droplet sizes of surfactant-stabilized remain nearly the same over a period of 24 h. However, Pickering emulsions are much more viscous than the surfactant-stabilized emulsions when comparison is made at the same volume fraction of the dispersed phase.


Author(s):  
Santiago F. Velandia ◽  
Diego Ramos ◽  
Maud Lebrun ◽  
Philippe Marchal ◽  
Cécile Lemaitre ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Zhigang Ren ◽  
peng zhao ◽  
Ye Zhang ◽  
Yang Yu ◽  
xiaoxuan lv ◽  
...  

Micron-sized carbon spheres synthesized via pickering emulsions has attracted much attention in recent two years. In present paper, we prepared palladium (Pd) and nitrogen co-embedded carbon microspheres for formaldehyde (HCHO)...


Author(s):  
Haisheng Xie ◽  
Wenyu Zhao ◽  
Daniel Chikere Ali ◽  
Xuehong Zhang ◽  
Zhilong Wang

The Pickering emulsion interface is an exceptional habitat for bacteria to grow by simultaneously utilizing hydrophobic and hydrophilic chemicals.


LWT ◽  
2021 ◽  
pp. 111999
Author(s):  
Zhongyang Ren ◽  
Zhongzheng Chen ◽  
Yuanyuan Zhang ◽  
Xiaorong Lin ◽  
Zhanming Li ◽  
...  

Author(s):  
Claire Bordes ◽  
Marie‐Alexandrine Bolzinger ◽  
Myriam El Achak ◽  
Fabrice Pirot ◽  
Delphine Arquier ◽  
...  
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 492
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Mikhail A. Sheremet

In this study, thermoelectric generation with impinging hot and cold nanofluid jets is considered with computational fluid dynamics by using the finite element method. Highly conductive CNT particles are used in the water jets. Impacts of the Reynolds number of nanojet stream combinations (between (Re1, Re2) = (250, 250) to (1000, 1000)), horizontal distance of the jet inlet from the thermoelectric device (between (r1, r2) = (−0.25, −0.25) to (1.5, 1.5)), impinging jet inlet to target surfaces (between w2 and 4w2) and solid nanoparticle volume fraction (between 0 and 2%) on the interface temperature variations, thermoelectric output power generation and conversion efficiencies are numerically assessed. Higher powers and efficiencies are achieved when the jet stream Reynolds numbers and nanoparticle volume fractions are increased. Generated power and efficiency enhancements 81.5% and 23.8% when lowest and highest Reynolds number combinations are compared. However, the power enhancement with nanojets using highly conductive CNT particles is 14% at the highest solid volume fractions as compared to pure water jet. Impacts of horizontal location of jet inlets affect the power generation and conversion efficiency and 43% variation in the generated power is achieved. Lower values of distances between the jet inlets to the target surface resulted in higher power generation while an optimum value for the highest efficiency is obtained at location zh = 2.5ws. There is 18% enhancement in the conversion efficiency when distances at zh = ws and zh = 2.5ws are compared. Finally, polynomial type regression models are obtained for estimation of generated power and conversion efficiencies for water-jets and nanojets considering various values of jet Reynolds numbers. Accurate predictions are obtained with this modeling approach and it is helpful in assisting the high fidelity computational fluid dynamics simulations results.


Sign in / Sign up

Export Citation Format

Share Document