Enhanced toxicity and cellular uptake of methotrexate-conjugated nanoparticles in folate receptor-positive cancer cells by decorating with folic acid-conjugated d -α-tocopheryl polyethylene glycol 1000 succinate

2015 ◽  
Vol 136 ◽  
pp. 383-393 ◽  
Author(s):  
Varaporn Buraphacheep Junyaprasert ◽  
Sirithip Dhanahiranpruk ◽  
Jiraphong Suksiriworapong ◽  
Kittisak Sripha ◽  
Primchanien Moongkarndi
Nanomedicine ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. 373-389
Author(s):  
Geetha Maniam ◽  
Chun-Wai Mai ◽  
Mohd Zulkefeli ◽  
Ju-Yen Fu

Aim: To synthesize niosomes co-encapsulating gemcitabine (GEM) and tocotrienols, and physicochemically characterize and evaluate the antipancreatic effects of the nanoformulation on Panc 10.05, SW 1990, AsPC-1 and BxPC-3 cells. Materials & methods: Niosomes-entrapping GEM and tocotrienols composed of Span 60, cholesterol and D-α-tocopheryl polyethylene glycol 1000 succinate were produced by Handjani-Vila and film hydration methods. Results: The film hydration produced vesicles measuring 161.9 ± 0.5 nm, approximately 50% smaller in size than Handjani-Vila method, with maximum entrapment efficiencies of 20.07 ± 0.22% for GEM and 34.52 ± 0.10% for tocotrienols. In Panc 10.05 cells, GEM’s antiproliferative effect was enhanced 2.78-fold in combination with tocotrienols. Niosomes produced a significant ninefold enhancement in cytotoxicity of the combination, supported by significantly higher cellular uptake of GEM in the cells. Conclusion: This study is a proof of concept on the synthesis of dual-drug niosomes and their efficacy on pancreatic cancer cells in vitro.


2018 ◽  
Vol 18 (8) ◽  
pp. 1138-1147 ◽  
Author(s):  
Esra Metin ◽  
Pelin Mutlu ◽  
Ufuk Gündüz

Background: Although conventional chemotherapy is the most common method for cancer treatment, it has several side effects such as neuropathy, alopecia and cardiotoxicity. Since the drugs are given to body systemically, normal cells are also affected, just like cancer cells. However, in recent years, targeted drug delivery has been developed to overcome these drawbacks. Objective: The aim of this study was targeted co-delivery of doxorubicin (Dox) which is an anticancer agent and D-α-Tocopherol polyethylene glycol 1000 succinate (vitamin E TPGS or simply TPGS) to breast cancer cells. For this purpose, Magnetic Nanoparticles (MNPs) were synthesized and coated with Oleic Acid (OA). Coated nanoparticles were encapsulated in Poly Lactic-co-Glycolic Acid (PLGA) and TPGS polymers and loaded with Dox. The Nanoparticles (NPs) were characterized by Fourier Transform Infrared (FTIR) spectroscopy, zetapotential analysis, Dynamic Light Scattering (DLS) analysis, Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscope (SEM) analysis. Results: The results showed that NPs were spherical, superparamagnetic and in the desired range for use in drug targeting. The targetability of NPs was confirmed. Moreover, TPGS and Dox loading was shown by TGA and FTIR analyses. NPs were internalized by cells and the cytotoxic effect of drug loaded NPs on sensitive (MCF-7) and drug-resistant (MCF-7/Dox) cells were examined. It was seen that the presence of TPGS increased cytotoxicity significantly. TPGS also enhanced drug loading efficiency, release rate, cellular internalization. In MCF- 7/Dox cells, the drug resistance seems to be decreased when Dox is loaded onto TPGS containing NPs. Conclusion: This magnetic PLGA nanoparticle system is important for new generation targeted chemotherapy and could be used for breast cancer treatment after in vivo tests.


Talanta ◽  
2018 ◽  
Vol 183 ◽  
pp. 39-47 ◽  
Author(s):  
Junli Zhang ◽  
Xuewei Zhao ◽  
Ming Xian ◽  
Chuan Dong ◽  
Shaomin Shuang

2019 ◽  
Vol 20 (9) ◽  
pp. 2156 ◽  
Author(s):  
Akhtar ◽  
Ghali ◽  
Wang ◽  
Bell ◽  
Li ◽  
...  

High-risk human papilloma virus (HPV) infection is directly associated with cervical cancer development. Arsenic trioxide (ATO), despite inducing apoptosis in HPV-infected cervical cancer cells in vitro, has been compromised by toxicity and poor pharmacokinetics in clinical trials. Therefore, to improve ATO’s therapeutic profile for HPV-related cancers, this study aims to explore the effects of length of ligand spacers of folate-targeted liposomes on the efficiency of ATO delivery to HPV-infected cells. Fluorescent ATO encapsulated liposomes with folic acid (FA) conjugated to two different PEG lengths (2000 Da and 5000 Da) were synthesised, and their cellular uptake was examined for HPV-positive HeLa and KB and HPV-negative HT-3 cells using confocal microscopy, flow cytometry, and spectrophotometer readings. Cellular arsenic quantification and anti-tumour efficacy was evaluated through inductively coupled plasma-mass spectrometry (ICP-MS) and cytotoxicity studies, respectively. Results showed that liposomes with a longer folic acid-polyethylene glycol (FA-PEG) spacer (5000 Da) displayed a higher efficiency in targeting folate receptor (FR) + HPV-infected cells without increasing any inherent cytotoxicity. Targeted liposomally delivered ATO also displayed superior selectivity and efficiency in inducing higher cell apoptosis in HPV-positive cells per unit of arsenic taken up than free ATO, in contrast to HT-3. These findings may hold promise in improving the management of HPV-associated cancers.


2007 ◽  
Vol 3 (3) ◽  
pp. 224-238 ◽  
Author(s):  
Resham Bhattacharya ◽  
Chitta Ranjan Patra ◽  
Alexis Earl ◽  
Shanfeng Wang ◽  
Aaron Katarya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document