Soot volume fraction measurement in low-pressure methane flames by combining laser-induced incandescence and cavity ring-down spectroscopy: Effect of pressure on soot formation

2008 ◽  
Vol 155 (1-2) ◽  
pp. 289-301 ◽  
Author(s):  
P. Desgroux ◽  
X. Mercier ◽  
B. Lefort ◽  
R. Lemaire ◽  
E. Therssen ◽  
...  
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 147
Author(s):  
Natascia Palazzo ◽  
Lars Zigan ◽  
Franz J. T. Huber ◽  
Stefan Will

Emissions from diesel engines can be limited and potentially decreased by modifying the fuel chemical composition through additive insertion. One class of additives that have shown to be particularly efficient in the reduction of the particulates from the combustion of diesel fuels are oxygenated compounds. In the present study we investigate the effect of tripropylene glycol methyl ether (TPGME) and two polyoxymethylene dimethyl ethers (POMDME or OMEs) on soot formation in a laminar diesel diffusion flame. From the evaluation of soot volume fraction by laser-induced incandescence (LII) measurements we could observe that OME additives have a substantial capability (higher compared to TPGME) to decrease the particle concentration, which drops by up to 36% with respect to the pure diesel fuel. We also note a reduction in particle aggregate size, determined by wide-angle light scattering (WALS) measurements, which is more pronounced in the case of OME–diesel blends. The effects we observe can be correlated to the higher amount of oxygen content in the OME molecules. Moreover, both additives investigated seem to have almost no impact on the local soot temperature which could in turn play a key role in the production of soot particles.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
P. N. Langenkamp ◽  
J. A. van Oijen ◽  
H. B. Levinsky ◽  
A. V. Mokhov

The growth of soot volume fraction and aggregate size was studied in burner-stabilized premixed C2H4/air flames with equivalence ratios between 2.0 and 2.35 as function of height above the burner using laser-induced incandescence (LII) to measure soot volume fractions and angle-dependent light scattering (ADLS) to measure corresponding aggregate sizes. Flame temperatures were varied at fixed equivalence ratio by changing the exit velocity of the unburned gas mixture. Temperatures were measured using spontaneous Raman scattering in flames with equivalence ratios up to ϕ = 2.1, with results showing good correspondence (within 50 K) with temperatures calculated using the San Diego mechanism. Both the soot volume fraction and radius of gyration strongly increase in richer flames. Furthermore, both show a nonmonotonic dependence on flame temperature, with a maximum occurring at ~1675 K for the volume fraction and ~1700 K for the radius of gyration. The measurement results were compared with calculations using two different semiempirical two-equation models of soot formation. Numerical calculations using both mechanisms substantially overpredict the measured soot volume fractions, although the models do better in richer flames. The model accounting for particle coagulation overpredicts the measured radii of gyration substantially for all equivalence ratios, although the calculated values improve at ϕ = 2.35.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1993 ◽  
Author(s):  
Natascia Palazzo ◽  
Matthias Kögl ◽  
Philipp Bauer ◽  
Manu Naduvil Mannazhi ◽  
Lars Zigan ◽  
...  

In the present work, a novel burner capable of complete pre-vaporization and stationary combustion of diesel fuel in a laminar diffusion flame has been developed to investigate the effect of the chemical composition of diesel fuel on soot formation. For the characterization of soot formation during diesel combustion we performed a comprehensive morphological characterization of the soot and determined its concentration by coupling elastic light scattering (ELS) and laser-induced incandescence (LII) measurements. With ELS, radii of gyration of aggregates were measured within a point-wise measurement volume, LII was employed in an imaging approach for a 2D-analysis of the soot volume fraction. We carried out LII and ELS measurements at different positions in the flame for two different fuel types, revealing the effects of small modifications of the fuel composition on soot emission during diesel combustion.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3671
Author(s):  
Subrat Garnayak ◽  
Subhankar Mohapatra ◽  
Sukanta K. Dash ◽  
Bok Jik Lee ◽  
V. Mahendra Reddy

This article presents the results of computations on pilot-based turbulent methane/air co-flow diffusion flames under the influence of the preheated oxidizer temperature ranging from 293 to 723 K at two operating pressures of 1 and 3 atm. The focus is on investigating the soot formation and flame structure under the influence of both the preheated air and combustor pressure. The computations were conducted in a 2D axisymmetric computational domain by solving the Favre averaged governing equation using the finite volume-based CFD code Ansys Fluent 19.2. A steady laminar flamelet model in combination with GRI Mech 3.0 was considered for combustion modeling. A semi-empirical acetylene-based soot model proposed by Brookes and Moss was adopted to predict soot. A careful validation was initially carried out with the measurements by Brookes and Moss at 1 and 3 atm with the temperature of both fuel and air at 290 K before carrying out further simulation using preheated air. The results by the present computation demonstrated that the flame peak temperature increased with air temperature for both 1 and 3 atm, while it reduced with pressure elevation. The OH mole fraction, signifying reaction rate, increased with a rise in the oxidizer temperature at the two operating pressures of 1 and 3 atm. However, a reduced value of OH mole fraction was observed at 3 atm when compared with 1 atm. The soot volume fraction increased with air temperature as well as pressure. The reaction rate by soot surface growth, soot mass-nucleation, and soot-oxidation rate increased with an increase in both air temperature and pressure. Finally, the fuel consumption rate showed a decreasing trend with air temperature and an increasing trend with pressure elevation.


2021 ◽  
Author(s):  
Amit Makhija ◽  
Krishna Sesha Giri

Abstract Soot volume fraction predictions through simulations carried out on OpenFOAM® are reported in diffusion flames with ethylene fuel. A single-step global reaction mechanism for gas-phase species with an infinitely fast chemistry assumption is employed. Traditionally soot formation includes inception, nucleation, agglomeration, growth, and oxidation processes, and the individual rates are solved to determine soot levels. However, in the present work, the detailed model is replaced with the soot formation and oxidation rates, defined as analytical functions of mixture fraction and temperature, where the net soot formation rate can be defined as the sum of individual soot formation and oxidation rates. The soot formation/oxidation rates are modelled as surface area-independent processes. The flame is modelled by solving conservation equations for continuity, momentum, total energy, and species mass fractions. Additionally, separate conservation equations are solved to compute the mixture fraction and soot mass fraction consisting of source terms that are identical and account for the mixture fraction consumption/production due to soot. As a consequence, computational time can be reduced drastically. This is a quantitative approach that gives the principal soot formation regions depending on the combination of local mixture fraction and temperature. The implemented model is based on the smoke point height, an empirical method to predict the sooting propensity based on fuel stoichiometry. The model predicts better soot volume fraction in buoyant diffusion flames. It was also observed that the optimal fuel constants to evaluate soot formation rates for different fuels change with fuel stoichiometry. However, soot oxidation strictly occurs in a particular region in the flame; hence, they are independent of fuel. The numerical results are compared with the experimental measurements, showing an excellent agreement for the velocity and temperature. Qualitative agreements are observed for the soot volume fraction predictions. A close agreement was obtained in smoke point prediction for the overventilated flame. An established theory through simulations was also observed, which states that the amount of soot production is proportional to the fuel flow rate. Further validations underscore the predictive capabilities. Model improvements are also reported with better predictions of soot volume fractions through modifications to the model constants based on mixture fraction range.


2021 ◽  
Author(s):  
Nemanja Ceranic

Soot models have been investigated for several decades and many fundamental models exist that prescribe soot formation in agreement with experiments and theories. However, due to the complex nature of soot formation, not all pathways have been fully characterized. This work has numerically studied the influence that aliphatic based inception models have on soot formation for coflow laminar diffusion flames. CoFlame is the in-house parallelized FORTRAN code that was used to conduct this research. It solves the combustion fluid dynamic conservation equations for a variety of coflow laminar diffusion flames. New soot inception models have been developed for specific aliphatics in conjunction with polycyclic aromatic hydrocarbon based inception. The purpose of these models was not to be completely fundamental in nature, but more so a proof-of-concept in that an aliphatic based mechanism could account for soot formation deficiencies that exist with just PAH based inception. The aliphatic based inception models show potential to enhance predicative capability by increasing the prediction of the soot volume fraction along the centerline without degrading the prediction along the pathline of maximum soot. Additionally, the surface reactivity that was used to achieve these results lied closer in the range of numerically derived optimal values as compared to the surface reactivity that was needed to match peak soot concentrations without the aliphatic based inception models.


2016 ◽  
Vol 24 (26) ◽  
pp. 29547 ◽  
Author(s):  
Terrence R. Meyer ◽  
Benjamin R. Halls ◽  
Naibo Jiang ◽  
Mikhail N. Slipchenko ◽  
Sukesh Roy ◽  
...  

Author(s):  
Pravin Nakod ◽  
Saurabh Patwardhan ◽  
Ishan Verma ◽  
Stefano Orsino

Emission standard agencies are coming up with more stringent regulations on soot, given its adverse effect on human health. It is expected that Environmental Protection Agency (EPA) will soon place stricter regulations on allowed levels of the size of soot particles from aircraft jet engines. Since, aircraft engines operate at varying operating pressure, temperature and air-fuel ratios, soot fraction changes from condition to condition. Computation Fluid Dynamics (CFD) simulations are playing a key role in understanding the complex mechanism of soot formation and the factors affecting it. In the present work, soot formation prediction from numerical analyses for turbulent kerosene-air diffusion jet flames at five different operating pressures in the range of 1 atm. to 7 atm. is presented. The geometrical and test conditions are obtained from Young’s thesis [1]. Coupled combustion-soot simulations are performed for all the flames using steady diffusion flamelet model for combustion and Mass-Brookes-Hall 2-equation model for soot with a 2D axisymmetric mesh. Combustion-Soot coupling is required to consider the effect of soot-radiation interaction. Simulation results in the form of axial and radial profiles of temperature, mixture fraction and soot volume fraction are compared with the corresponding experimental measured profiles. The results for temperature and mixture fraction compare well with the experimental profiles. Predicted order of magnitude and the profiles of the soot volume fraction also compare well with the experimental results. The correct trend of increasing the peak soot volume fraction with increasing the operating pressure is also captured.


2021 ◽  
Author(s):  
Mingshan Sun ◽  
Zhiwen Gan

Abstract The hydrogen addition is a potential way to reduce the soot emission of aviation kerosene. The current study analyzed the effect of hydrogen addition on aviation kerosene (Jet A1) soot formation in a laminar flame at elevated pressure to obtain a fundamental understanding of the reduced soot formation by hydrogen addition. The soot formation of flame was simulated by CoFlame code. The soot formation of kerosene-nitrogen-air, (kerosene + replaced hydrogen addition)-nitrogen-air, (kerosene + direct hydrogen addition)-nitrogen-air and (kerosene + direct nitrogen addition)-nitrogen-air laminar flames were simulated. The calculated pressure includes 1, 2 and 5 atm. The hydrogen addition increases the peak temperature of Jet A1 flame and extends the height of flame. The hydrogen addition suppresses the soot precursor formation of Jet A1 by physical dilution effect and chemical inhibition effect, which weaken the poly-aromatic hydrocarbon (PAH) condensation process and reduce the soot formation. The elevated pressure significantly accelerates the soot precursor formation and increases the soot formation in flame. Meanwhile, the ratio of reduced soot volume fraction to base soot volume fraction by hydrogen addition decreases with the increase of pressure, indicating that the elevated pressure weakens the suppression effect of hydrogen addition on soot formation in Jet A1 flame.


Sign in / Sign up

Export Citation Format

Share Document