scholarly journals Dynamics of high sound-speed metal confiners driven by non-ideal high-explosive detonation

2015 ◽  
Vol 162 (5) ◽  
pp. 1857-1867 ◽  
Author(s):  
Mark Short ◽  
Scott I. Jackson
2020 ◽  
Vol 496 (3) ◽  
pp. 2932-2945 ◽  
Author(s):  
G Ballabio ◽  
R D Alexander ◽  
C J Clarke

ABSTRACT Photoevaporation driven by high-energy radiation from the central star plays an important role in the evolution of protoplanetary discs. Photoevaporative winds have been unambiguously detected through blue-shifted emission lines, but their detailed properties remain uncertain. Here we present a new empirical approach to make observational predictions of these thermal winds, seeking to fill the gap between theory and observations. We use a self-similar model of an isothermal wind to compute line profiles of several characteristic emission lines (in particular the [Ne ii] line at 12.81 μm, and optical forbidden lines such as [O i] 6300 Å and [S ii] 4068/4076 Å), studying how the lines are affected by parameters such as the gas temperature, disc inclinations, and density profile. Our model successfully reproduces blue-shifted lines with $v_{\rm peak} \lesssim 10$ km s−1, which decrease with increasing disc inclination. The line widths increase with increasing disc inclinations and range from $\Delta v\sim 15\text{ to }30$ km s−1. The predicted blue-shifts are mostly sensitive to the gas sound speed (and therefore the temperature). The observed [Ne ii] line profiles are consistent with a thermal wind and point towards a relatively high sound speed, as expected for extreme-UV photoevaporation. However, the observed [O i] line profiles require lower temperatures, as expected in X-ray photoevaporation, and show a wider scatter that is difficult to reconcile with a single wind model; it seems likely that these lines trace different components of a multiphase wind. We also note that the spectral resolution of current observations remains an important limiting factor in these studies, and that higher resolution spectra are required if emission lines are to further our understanding of protoplanetary disc winds.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5935
Author(s):  
Steve Gilbertson ◽  
Mark Pickrell ◽  
Dario Castano ◽  
Gary Salazar ◽  
Tom Beery ◽  
...  

Dynamic elastic strain in ~1.8 and 1.0 m diameter containment vessels containing a high explosive detonation was measured using an array of fiber Bragg gratings. The all-optical method, called real-time localized strain measurement, recorded the strain for 10 ms after detonation with additional measurements being sequentially made at a rate of 1.7 MHz. A swept wavelength laser source provided the repetition rate necessary for such high-speed measurements while also providing enough signal strength and bandwidth to simultaneously measure 8 or more unique points on the vessel’s surface. The data presented here arethen compared with additional diagnostics consisting of a fast spectral interferometer and an optical backscatter reflectometer to show a comparison between the local and global changes in the vessel strain, both dynamically and statically to further characterize the performance of the localized strain measurement. The results are also compared with electrical resistive strain gauges and finite element analysis simulations.


2010 ◽  
Vol 56 (199) ◽  
pp. 747-757 ◽  
Author(s):  
Andrei V. Kurbatov ◽  
Paul A. Mayewski ◽  
Jorgen P. Steffensen ◽  
Allen West ◽  
Douglas J. Kennett ◽  
...  

AbstractWe report the discovery in the Greenland ice sheet of a discrete layer of free nanodiamonds (NDs) in very high abundances, implying most likely either an unprecedented influx of extraterrestrial (ET) material or a cosmic impact event that occurred after the last glacial episode. From that layer, we extracted n-diamonds and hexagonal diamonds (lonsdaleite), an accepted ET impact indicator, at abundances of up to about 5×106 times background levels in adjacent younger and older ice. The NDs in the concentrated layer are rounded, suggesting they most likely formed during a cosmic impact through some process similar to carbon-vapor deposition or high-explosive detonation. This morphology has not been reported previously in cosmic material, but has been observed in terrestrial impact material. This is the first highly enriched, discrete layer of NDs observed in glacial ice anywhere, and its presence indicates that ice caps are important archives of ET events of varying magnitudes. Using a preliminary ice chronology based on oxygen isotopes and dust stratigraphy, the ND-rich layer appears to be coeval with ND abundance peaks reported at numerous North American sites in a sedimentary layer, the Younger Dryas boundary layer (YDB), dating to 12.9 ± 0.1 ka. However, more investigation is needed to confirm this association.


2006 ◽  
Vol 129 (2) ◽  
pp. 136-145 ◽  
Author(s):  
Xiongjun Wu ◽  
Georges L. Chahine

A high speed/high flow test facility was designed and implemented to study experimentally the supercavitating flow behind a projectile nose in a controlled laboratory setting. The simulated projectile nose was held in position in the flow and the cavity interior was made visible by having the walls of the visualization facility “cut through” the supercavity. Direct visualization of the cavity interior and measurements of the properties of the cavity contents were made. Transducers were positioned in the test section within the supercavitation volume to enable measurement of the sound speed and attenuation as a function of the flow and geometry parameters. These characterized indirectly the content of the cavity. Photography, high speed videos, and acoustic measurements were used to investigate the contents of the cavity. A side sampling cell was also used to sample in real time the contents of the cavity and measure the properties. Calibration tests conducted in parallel in a vapor cell enabled confirmation that, in absence of air injection, the properties of the supercavity medium match those of a mixture of water vapor and water droplets. Such a mixture has a very high sound speed with strong sound attenuation. Injection of air was also found to significantly decrease sound speed and to increase transmission.


Sign in / Sign up

Export Citation Format

Share Document