The equivalent plastic strain-dependent Yld2000-2d yield function and the experimental verification

2009 ◽  
Vol 47 (1) ◽  
pp. 12-22 ◽  
Author(s):  
Haibo Wang ◽  
Min Wan ◽  
Xiangdong Wu ◽  
Yu Yan
1981 ◽  
Vol 103 (1) ◽  
pp. 1-6 ◽  
Author(s):  
D. Lefebvre ◽  
K. W. Neale ◽  
F. Ellyin

The plastic strain energy required for failure in low-cycle biaxial fatigue is estimated using the energy in uniaxial fatigue and assumptions from the theory of plasticity. A criterion for high-strain multiaxial fatigue of the form Δε¯pΔσ¯=KNƒc is developed, where the equivalent stress amplitude Δσ and the equivalent plastic strain amplitude Δεp are based on the von Mises yield function of plasticity. The parameters K and c are assumed to depend on the mechanical properties of the material and to be functions of the stress ratio. These functions can be evaluated from uniaxial fatigue data and are compared with tests performed on thin-walled tubes of mild steel at different stress ratios. The proposed criterion seems to yield a promising approach for the low-cycle fatigue analysis of metals under biaxial states of stress.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


2013 ◽  
Vol 477-478 ◽  
pp. 21-24
Author(s):  
Hui Kai Gao ◽  
Jian Meng Huang

The contact between substrate and micro-cantilever simplified as an ideal flat substrate contact with a micro-cantilever rough surface. A three-dimensional adhesive contact model was established on isotropic rough surfaces exhibiting fractal behavior, and the equivalent plastic strain was discussed using the finite element analysis. The maximum equivalent plastic strain and its depth were presented with the different paths of rough solid when loading. The result show that the equivalent plastic strain versus different depth which at different locations showed different laws, in the top area of the asperities versus different depth, the maximum equivalent plastic strain occurs in the subsurface range about 0.5μm from the surface or on the surface. In addition, with different deformation characteristics, the degree of the equivalent plastic strain was different.. The contact model between micro-cantilever rough surface and flat substrate will lay a foundation to further research on the substance of the process of friction and wear.


2016 ◽  
Vol 20 (1) ◽  
pp. 247-254
Author(s):  
Darko Veljic ◽  
Bojan Medjo ◽  
Marko Rakin ◽  
Zoran Radosavljevic ◽  
Nikola Bajic

Temperature, plastic strain and heat generation during the plunge stage of the friction stir welding (FSW) of high-strength aluminium alloys 2024 T3 and 2024 T351 are considered in this work. The plunging of the tool into the material is done at different rotating speeds. A three-dimensional finite element (FE) model for thermomechanical simulation is developed. It is based on arbitrary Lagrangian-Eulerian formulation, and Johnson-Cook material law is used for modelling of material behaviour. From comparison of the numerical results for alloys 2024 T3 and 2024 T351, it can be seen that the former has more intensive heat generation from the plastic deformation, due to its higher strength. Friction heat generation is only slightly different for the two alloys. Therefore, temperatures in the working plate are higher in the alloy 2024 T3 for the same parameters of the plunge stage. Equivalent plastic strain is higher for 2024 T351 alloy, and the highest values are determined under the tool shoulder and around the tool pin. For the alloy 2024 T3, equivalent plastic strain is the highest in the influence zone of the tool pin.


Author(s):  
Stephan Wulfinghoff ◽  
Thomas Böhlke

We propose a visco-plastic strain gradient plasticity theory for single crystals. The gradient enhancement is based on an equivalent plastic strain measure. Two physically equivalent variational settings for the problem are discussed: a direct formulation and an alternative version with an additional micromorphic-like field variable, which is coupled to the equivalent plastic strain by a Lagrange multiplier. The alternative formulation implies a significant reduction of nodal degrees of freedom. The local algorithm and element stiffness matrices of the finite-element discretization are discussed. Numerical examples illustrate the advantages of the alternative formulation in three-dimensional simulations of oligo-crystals. By means of the suggested formulation, complex boundary value problems of the proposed plastic strain gradient theory can be solved numerically very efficiently.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yong Peng ◽  
Xuanzhen Chen ◽  
Shan Peng ◽  
Chao Chen ◽  
Jiahao Li ◽  
...  

In order to study the dynamic and fracture behavior of 6005 aluminum alloy at different strain rates and stress states, various tests (tensile tests at different strain rates and tensile shearing tests at five stress states) are conducted by Mechanical Testing and Simulation (MTS) and split-Hopkinson tension bar (SHTB). Numerical simulations based on the finite element method (FEM) are performed with ABAQUS/Standard to obtain the actual stress triaxialities and equivalent plastic strain to fracture. The results of tensile tests for 6005 Al show obvious rate dependence on strain rates. The results obtained from simulations indicate the feature of nonmonotonicity between the strain to fracture and stress triaxiality. The equivalent plastic strain reduces to a minimum value and then increases in the stress triaxiality range from 0.04 to 0.30. A simplified Johnson-Cook (JC) constitutive model is proposed to depict the relationship between the flow stress and strain rate. What is more, the strain-rate factor is modified using a quadratic polynomial regression model, in which it is considered to vary with the strain and strain rates. A fracture criterion is also proposed in a low stress triaxiality range from 0.04 to 0.369. Error analysis for the modified JC model indicates that the model exhibits higher accuracy than the original one in predicting the flow stress at different strain rates. The fractography analysis indicates that the material has a typical ductile fracture mechanism including the shear fracture under pure shear and the dimple fracture under uniaxial tensile.


1995 ◽  
Vol 117 (4) ◽  
pp. 655-659 ◽  
Author(s):  
V. Gupta ◽  
P. Bastias ◽  
G. T. Hahn ◽  
C. A. Rubin

A “two-body,” elasto-plastic finite element model is employed to simulate repeated rolling contact in the presence of a surface irregularity. It is shown that the maximum Mises stress and equivalent plastic strain values in the substrate are related to the height of the pressure spikes. The results of the finite element calculations are used to derive generalizations about the influence of the indent geometry on the pressure spikes, peak cyclic plastic strains and their location below the surface. These relations can serve as guidelines for designing the depth and properties of surface coatings and modified layers.


Sign in / Sign up

Export Citation Format

Share Document