Spatiotemporal variations of residual stresses during multi-track and multi-layer deposition for laser powder bed fusion of Ti-6Al-4V

2021 ◽  
Vol 195 ◽  
pp. 110462
Author(s):  
T. Machirori ◽  
F.Q. Liu ◽  
Q.Y. Yin ◽  
H.L. Wei
Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 796
Author(s):  
Aya Takase ◽  
Takuya Ishimoto ◽  
Naotaka Morita ◽  
Naoko Ikeo ◽  
Takayoshi Nakano

Ti-6Al-4V alloy fabricated by laser powder bed fusion (L-PBF) and electron beam powder bed fusion (EB-PBF) techniques have been studied for applications ranging from medicine to aviation. The fabrication technique is often selected based on the part size and fabrication speed, while less attention is paid to the differences in the physicochemical properties. Especially, the relationship between the evolution of α, α’, and β phases in as-grown parts and the fabrication techniques is unclear. This work systematically and quantitatively investigates how L-PBF and EB-PBF and their process parameters affect the phase evolution of Ti-6Al-4V and residual stresses in the final parts. This is the first report demonstrating the correlations among measured parameters, indicating the lattice strain reduces, and c/a increases, shifting from an α’ to α+β or α structure as the crystallite size of the α or α’ phase increases. The experimental results combined with heat-transfer simulation indicate the cooling rate near the β transus temperature dictates the resulting phase characteristics, whereas the residual stress depends on the cooling rate immediately below the solidification temperature. This study provides new insights into the previously unknown differences in the α, α’, and β phase evolution between L-PBF and EB-PBF and their process parameters.


2021 ◽  
Vol 38 ◽  
pp. 101792
Author(s):  
Naresh Nadammal ◽  
Tatiana Mishurova ◽  
Tobias Fritsch ◽  
Itziar Serrano-Munoz ◽  
Arne Kromm ◽  
...  

Author(s):  
C. M. Davies ◽  
P. Sandmann ◽  
T. Ronneberg ◽  
P. A. Hooper ◽  
Saurabh Kabra

Abstract Uniaxial samples have been manufactured for tension/compression testing from 316L stainless steel by laser powder bed fusion (LPBF). Samples manufactured by LPBF are known to contain high levels of residual stresses. These uniaxial samples were built from a solid cylindrical rod and subsequently machined to reduce the central cross section of the sample to the required gauge diameter and improve the surface finish. Finite element (FE) models have been developed to simulate the LPBF process of the rods, their removal from the build plate and subsequent machining into the tension/compression samples. High tensile residual stresses were predicted at the surface of the samples, balances by similar magnitude compressive stresses along their axis. Post machining however, these stresses were reduced by around 80% or more. Residual stress measurements were performed on the samples post machining using the neutron diffraction techniques. These measurements confirmed that negligible residual stresses remained in the samples post removal from the build plate and machining.


Author(s):  
Giulio Marchese ◽  
Eleonora Atzeni ◽  
Alessandro Salmi ◽  
Sara Biamino

AbstractThe current work aimed to study the influence of various heat treatments on the microstructure, hardness, and residual stresses of Inconel 718 processed by laser powder bed fusion process. The reduction in residual stresses is crucial to avoid the deformation of the component during its removal from the building platform. Among the different heat treatments, 800 °C kept almost unaltered the original microstructure, reducing the residual stresses. Heat treatments at 900, 980, and 1065 °C gradually triggered the melt pool and dendritic structures dissolution, drastically reducing the residual stresses. Heat treatments at 900 and 980 °C involved the formation of δ phases, whereas 1065 °C generated carbides. These heat treatments were also performed on components with narrow internal channels revealing that heat treatments up to 900 °C did not trigger sintering mechanisms allowing to remove the powder from the inner channels.


2020 ◽  
Vol 4 (3) ◽  
pp. 91
Author(s):  
Josef Tomas ◽  
Leonhard Hitzler ◽  
Marco Köller ◽  
Jonas von Kobylinski ◽  
Michael Sedlmajer ◽  
...  

Laser-Powder Bed Fusion brings new possibilities for the design of parts, e.g., cutter shafts with integrated cooling channels close to the contour. However, there are new challenges to dimensional accuracy in the production of thin-walled components, e.g., heat exchangers. High degrees of dimensional accuracy are necessary for the production of functional components. The aim is to already achieve these during the process, to reduce post-processing costs and time. In this work, thin-walled ring specimens of H13 tool steel are produced and used for the analysis of dimensional accuracy and residual stresses. Two different scanning strategies were evaluated. One is a stripe scan strategy, which was automatically generated and provided by the machine manufacturer, and a (manually designed) sectional scan strategy. The ring segment strategy is designed by manually segmenting the geometry, which results in a longer preparation time. The samples were printed in different diameters and analyzed with respect to the degree of accuracy and residual stresses. The dimensional accuracy of ring specimens could be improved by up to 81% with the introduced sectional strategy compared to the standard approach.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matteo Busi ◽  
Nikola Kalentics ◽  
Manuel Morgano ◽  
Seth Griffiths ◽  
Anton S. Tremsin ◽  
...  

AbstractLaser powder bed fusion is an additive manufacturing technique extensively used for the production of metallic components. Despite this process has reached a status at which parts are produced with mechanical properties comparable to those from conventional production, it is still prone to introduce detrimental tensile residual stresses towards the surfaces along the building direction, implying negative consequences on fatigue life and resistance to crack formations. Laser shock peening (LSP) is a promising method adopted to compensate tensile residual stresses and to introduce beneficial compressive residual stress on the treated surfaces. Using neutron Bragg edge imaging, we perform a parametric study of LSP applied to 316L steel samples produced by laser powder bed fusion additive manufacturing. We include in the study the novel 3D-LSP technique, where samples are LSP treated also during the building process, at intermediate build layers. The LSP energy and spot overlap were set to either 1.0 or 1.5 J and 40$$\%$$ % or 80$$\%$$ % respectively. The results support the use of 3D-LSP treatment with the higher LSP laser energy and overlap applied, which showed a relative increase of surface compressive residual stress (CRS) and CRS depth by 54$$\%$$ % and 104$$\%$$ % respectively, compared to the conventional LSP treatment.


2021 ◽  
pp. 102334
Author(s):  
Thomas R. Watkins ◽  
Kinga A. Unocic ◽  
Alonso Peralta ◽  
Mustafa Megahed ◽  
Jeffrey R Bunn ◽  
...  

2020 ◽  
Vol 9 (4) ◽  
pp. 435-445
Author(s):  
Massimo Carraturo ◽  
Brandon Lane ◽  
Ho Yeung ◽  
Stefan Kollmannsberger ◽  
Alessandro Reali ◽  
...  

AbstractProcess-dependent residual stresses are one of the main burdens to a widespread adoption of laser powder bed fusion technology in industry. Residual stresses are directly influenced by process parameters, such as laser path, laser power, and speed. In this work, the influence of various scan speed and laser power control strategies on residual stresses is investigated. A set of nine different laser scan patterns is printed by means of a selective laser melting process on a bare plate of nickel superalloy 625 (IN625). A finite element model is experimentally validated comparing the simulated melt pool areas with high-speed thermal camera in situ measurements. Finite element analysis is then used to evaluate residual stresses for the nine different laser scan control strategies, in order to identify the strategy which minimizes the residual stress magnitude. Numerical results show that a constant power density scan strategy appears the most effective to reduce residual stresses in the considered domain.


2021 ◽  
pp. 109659
Author(s):  
Morteza Narvan ◽  
Ali Ghasemi ◽  
Eskandar Fereiduni ◽  
Stephen Kendrish ◽  
Mohamed Elbestawi

Sign in / Sign up

Export Citation Format

Share Document