Adaptation and application of the In Situ Adaptive Tabulation (ISAT) procedure to reacting flow calculations with complex surface chemistry

2011 ◽  
Vol 35 (7) ◽  
pp. 1317-1327 ◽  
Author(s):  
Ankan Kumar ◽  
Sandip Mazumder
Author(s):  
Sandip Mazumder ◽  
Ankan Kumar

The In Situ Adaptive Tabulation (ISAT) procedure, originally developed for the efficient computation of homogeneous reactions in chemically reacting flows, is adapted and demonstrated for reacting flow computations with complex heterogeneous (or surface) reactions. The treatment of heterogeneous reactions within a reacting flow calculation requires solution of a set of nonlinear differential algebraic equations at boundary faces/nodes, as opposed to the solution of an initial value problem for which the original ISAT procedure was developed. The modified ISAT algorithm, referred to as ISAT-S, is coupled to a three-dimensional unstructured reacting flow solver, and strategies for maximizing efficiency without hampering accuracy and convergence are developed. These include use of multiple binary tables, use of dynamic tolerance values to control errors, and periodic deletion and/or re-creation of the binary tables. The new procedure is demonstrated for steady-state catalytic combustion of a methane-air mixture on platinum using a 24-step reaction mechanism with 19 species, and for steady-state three-way catalytic conversion using a 61-step mechanism with 34 species. Both reaction mechanisms are first tested in simple 3D channel geometry with reacting walls, and the impact of various ISAT parameters is investigated. As a final step, the catalytic combustion mechanism is demonstrated in a laboratory-scale monolithic catalytic converter geometry with 57 channels discretized using 354,300 control volumes (4.6 million unknowns). For all of the cases considered, the reduction in the time taken to perform surface chemistry calculations alone was found to be a factor of 5–11.


Author(s):  
E. van Vliet ◽  
R. O. Fox ◽  
J. J. Derksen ◽  
S. B. Pope

The feasibility to implement fast-chemistry reactions in a three-dimensional large eddy simulation (LES) of a turbulent reacting flow using a filtered density function (FDF) technique is studied. Low-density polyethylene (LDPE) is used as an representative reaction due to the stiff nature of the ordinary differential equation (ODE’s) describing the kinetics. In FDF/LES, the chemistry needs to be evaluated many times for a large number of fictitious particles that are tracked in the flow, and therefore a constraint is put to the CPU time needed to solve the kinetics. Pope (1997) developed an in situ adaptive tabulation (ISAT) to treat complex chemistry computationally very efficiently when many evaluations of the chemistry are needed. Kolhapure and Fox (1999) successfully applied ISAT to LDPE using a quasi steady state assumption (QSSA). In the present paper, the aim is to optimize the latest version (ISAT Version 4.0, Pope, 2003) for the full LDPE reaction (i.e. without QSSA), in terms of accuracy and speed up by varying the error tolerance and the number of trees used by ISAT. For this purpose, a pairwise mixing stirred reactor (PMSR) is employed, since it forms a stringent test for the chemistry solver due to the large accessed region of composition space that can be established. For a number of trees of Ntree = 8 and an error tolerance of εtol = 10−5 the best overall performance of ISAT was obtained: compared with direct integration, a speed up factor of more than ten combined with an relative error in temperature of about 1% was found.


2011 ◽  
Vol 1354 ◽  
Author(s):  
Jean Paul Allain ◽  
Osman El-Atwani ◽  
Alex Cimaroli ◽  
Daniel L. Rokusek ◽  
Sami Ortoleva ◽  
...  

ABSTRACTIon-beam sputtering (IBS) has been studied as a means for scalable, mask-less nanopatterning of surfaces. Patterning at the nanoscale has been achieved for numerous types of materials including: semiconductors, metals and insulators. Although much work has been focused on tailoring nanopatterning by systematic ion-beam parameter manipulation, limited work has addressed elucidating on the underlying mechanisms for self-organization of multi-component surfaces. In particular there has been little attention to correlate the surface chemistry variation during ion irradiation with the evolution of surface morphology and nanoscale self-organization. Moreover the role of surface impurities on patterning is not well known and characterization during the time-scale of modification remains challenging. This work summarizes an in-situ approach to characterize the evolution of surface chemistry during irradiation and its correlation to surface nanopatterning for a variety of multi-components surfaces. The work highlights the importance and role of surface impurities in nanopatterning of a surface during low-energy ion irradiation. In particular, it shows the importance of irradiation-driven mechanisms in GaSb(100) nanopatterning by low-energy ions and how the study of these systems can be impacted by oxide formation.


Sign in / Sign up

Export Citation Format

Share Document