Effect of the cenospheres size and internally lateral constraints on dynamic compressive behavior of fly ash cenospheres polyurethane syntactic foams

2019 ◽  
Vol 171 ◽  
pp. 329-338 ◽  
Author(s):  
Zhiqiang Fan ◽  
Yuzhong Miao ◽  
Zhuangzhuang Wang ◽  
Bingbing Zhang ◽  
Honghao Ma
Materials ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 828 ◽  
Author(s):  
Kristine Rugele ◽  
Dirk Lehmhus ◽  
Irina Hussainova ◽  
Julite Peculevica ◽  
Marks Lisnanskis ◽  
...  

2016 ◽  
Vol 674 ◽  
pp. 35-40 ◽  
Author(s):  
Andrej Shishkin ◽  
Viktor Mironov ◽  
Vjacheslav Zemchenkov ◽  
Maksim Antonov ◽  
Irina Hussainova

This paper addresses an innovative syntactic foam produced out of metal powder (Fe), fly ash cenospheres (CS) and clay ceramic syntactic foams composite material (CM). Due to the low density of CS (bulk density - 0.38 g/cm3), the average density of these foams is about 2.6-2.9 g/cm3. It was found that CS undergoes phase transformation during thermal treatment at a temperature of 1200°C. Microstructural observations reveal a uniform distribution of CS and Fe particles in the composite. Compressive strength, and friction coefficient of obtained Fe/CS CM are in the range between 149 - 344 MPa and 0.15 - 1.1, respectively. Dependence of compressive strength on firing temperature is demonstrated exhibiting the maximum at 344 MPa; however, dependence of coefficient of friction on a material properties, obtained at different firing temperature exhibits the minimum value of 0.15 at the firing temperature of 1150 °C. The obtained syntactic form was shown to be a candidate for wear resistant applications.


2016 ◽  
Vol 4 (2) ◽  
pp. 19
Author(s):  
MENEZES CRAIG ◽  
RATHOD AJIT P ◽  
WASEWAR KAILAS L. ◽  
◽  
◽  
...  

2011 ◽  
Vol 686 ◽  
pp. 378-381
Author(s):  
Si Rong Yu ◽  
Zhi Qiu Huang ◽  
Jia An Liu

Novel AZ91D Mg alloy/fly-ash cenospheres (AZ91D/FAC) composites were fabricated by melt stir technique. The thermodynamic analyses of the interfacial reactions, the microstructure observation, and the phase analyses of the AZ91D/FAC composites were investigated. The results showed that the cenospheres were almost filled with Mg alloy matrix. In-situ MgO and Mg2Si phases were formed in Mg alloy matrix and near the interfaces between the cenospheres and Mg alloy matrix. Through the thermodynamic calculation, it can be found that the standard free enthalpy changes of these interfacial reactions are all negative at the temperature of Mg alloy melt preparation in this work, and these reactions can occur.


2011 ◽  
Vol 44 (44) ◽  
pp. 445301 ◽  
Author(s):  
Qin Li ◽  
Bing Wang ◽  
Chuang Li ◽  
Jianfeng Pang ◽  
Jianping Zhai

2016 ◽  
Vol 69 (1) ◽  
pp. 119 ◽  
Author(s):  
Li Lin ◽  
Ya Wang ◽  
Manhong Huang ◽  
Donghui Chen

Three-dimensional (3D) BiOBr/BiOI hierarchical microspheres were successfully fabricated on the surface of fly ash cenospheres (FACs) via a facile one-pot solvothermal method for the first time. The as-prepared samples were characterized by XRD, SEM, energy-dispersive X-ray spectroscopy, UV–visible diffuse reflectance spectroscopy, and high-resolution transmission electron microscopy. The results indicated that the loaded hierarchical microspheres exhibited a uniform distribution, and some aggregation was observed. These well-dispersed hierarchical microspheres were composed of 2D nanosheets, which possess heterojunction structures. Based on the photodegradation tests examining the removal of rhodamine B from water under visible light irradiation (λ > 420 nm), the photocatalytic activity of BiOB/BiOI/FACs was superior to that of BiOBr/FACs and BiOI/FACs. A proposed mechanism for the enhanced photocatalytic activity displayed by BiOB/BiOI/FACs is discussed.


Sign in / Sign up

Export Citation Format

Share Document