Structure of the in situ produced polyethylene based composites modified with multi-walled carbon nanotubes: In situ synchrotron X-ray diffraction and differential scanning calorimetry study

2018 ◽  
Vol 167 ◽  
pp. 148-154 ◽  
Author(s):  
Mariya A. Kazakova ◽  
Alexander G. Selyutin ◽  
Nina V. Semikolenova ◽  
Arcady V. Ishchenko ◽  
Sergey I. Moseenkov ◽  
...  
2011 ◽  
Vol 248 (11) ◽  
pp. 2449-2453 ◽  
Author(s):  
Périne Landois ◽  
Stéphan Rouziére ◽  
Mathieu Pinault ◽  
Dominique Porterat ◽  
Cristian Mocuta ◽  
...  

CrystEngComm ◽  
2018 ◽  
Vol 20 (22) ◽  
pp. 3105-3116 ◽  
Author(s):  
Roman Svoboda ◽  
Roman Bulánek ◽  
Dušan Galusek ◽  
Roghayeh Hadidimasouleh ◽  
Yadolah Ganjkhanlou

Differential scanning calorimetry and in situ X-ray diffraction analysis were used to study the products and mechanism of crystal formation in VOx–ZrO2 ceramics.


2017 ◽  
Vol 25 (8) ◽  
pp. 611-620 ◽  
Author(s):  
Fabrizio Quadrini ◽  
Denise Bellisario ◽  
Loredana Santo ◽  
Felicia Stan ◽  
Fetecau Catalin

Multi-walled carbon-nanotubes (MWCNTs) were melt-mixed with three different thermoplastic matrices (polypropylene, PP, polycarbonate, PC, and thermoplastic polyurethane, TPU) to produce nanocomposites with three different filler contents (1, 3, and 5 wt.%). Initial nanocomposite blends (in the shape of pellets) were tested under differential scanning calorimetry to evaluate the effect of the melt mixing stage. Nanocomposite samples were produced by compression moulding in a laboratory-scale system, and were tested with quasi-static (bending, indentation), and dynamic mechanical tests as well as with friction tests. The results showed the effect of the filler content on the mechanical and functional properties of the nanocomposites. Compression moulding appeared to be a valuable solution to manufacture thermoplastic nanocomposites when injection moulding leads to loss of performance. MWCNT-filled thermoplastics could be used also for structural and functional uses despite, the present predominance of electrical applications.


2011 ◽  
Vol 172-174 ◽  
pp. 646-651 ◽  
Author(s):  
Gamra Tellouche ◽  
Khalid Hoummada ◽  
Dominique Mangelinck ◽  
Ivan Blum

The phase formation sequence of Ni silicide for different thicknesses is studied by in situ X ray diffraction and differential scanning calorimetry measurements. The formation of a transient phase is observed during the formation of δ-Ni2Si; transient phases grow and disappear during the growth of another phase. A possible mechanism is proposed for the transient phase formation and consumption. It is applied to the growth and consumption of θ-Ni2Si. A good accordance is found between the proposed model and in situ measurement of the kinetics of phase formation obtained by x-ray diffraction and differential scanning calorimetry for higher thickness.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1294 ◽  
Author(s):  
Xiaoting Li ◽  
Wenxia Jia ◽  
Beibei Dong ◽  
Huan Yuan ◽  
Fengmei Su ◽  
...  

Isotactic polypropylene filled with 1 wt.% multi-walled carbon nanotubes (iPP/MWCNTs) were prepared, and their crystallization behavior induced by pressurizing to 2.0 GPa with adjustable rates from 2.5 to 1.3 × 104 MPa/s was studied. The obtained samples were characterized by combining wide angle X-ray diffraction, small angle X-ray scattering, differential scanning calorimetry, transmission electron microscopy and atomic force microscopy techniques. It was found that pressurization is a simple way to prepare iPP/MWCNTs composites in mesophase, γ-phase, or their blends. Two threshold pressurization rates marked as R1 and R2 were identified, while R1 corresponds to the onset of mesomorphic iPP formation. When the pressurization rate is lower than R1 only γ-phase generates, with its increasing mesophase begins to generate and coexist with γ-phase, and if it exceeds R2 only mesophase can generate. When iPP/MWCNTs crystallized in γ-phase, compared with the neat iPP, the existence of MWCNTs can promote the nucleation of γ-phase, leading to the formation of γ-crystal with thicker lamellae. If iPP/MWCNTs solidified in mesophase, MWCNTs can decrease the growth rate of the nodular structure, leading to the formation of mesophase with smaller nodular domains (about 9.4 nm). Mechanical tests reveal that, γ-iPP/MWCNTs composites prepared by slow pressurization display high Young’s modulus, high yield strength and high elongation at break, and meso-iPP/MWCNTs samples have excellent deformability because of the existence of nodular morphology. In this sense, the pressurization method is proved to be an efficient approach to regulate the crystalline structure and the properties of iPP/MWCNTs composites.


2011 ◽  
Vol 189-193 ◽  
pp. 1222-1227 ◽  
Author(s):  
Yuan Lian ◽  
Hong Mei Wang ◽  
Dian Wu Huang

Polypropylene (PP) nanocomposites with 0.1, 0.2, 0.5, 0.8, 1.0 and 2.0 wt% multi-walled carbon nanotubes (MW-CNTs) were prepared via meltcompounding in a twin-screw extruder followed by injection molding. The effects of MW-CNTs additions on the structure, mechanical and photo-oxidation behavior of PP were studied using X-ray diffraction (XRD), differential scanning calorimetry (DSC), tensile tests and FT-IR apparatus. XRD results showed that only α-PP crystals form in the PP/MW-CNTs composites. DSC results confirmed that the corporation of MW-CNTs enhanced the nucleation process on PP crystallization. Results of the tensile tests showed that before photo-oxidation, the tensile strengths of the samples increased with the increase of MW-CNTs contents when the MW-CNTs contents were less than 1% wt, whilst the tensile strength decreased at higher MW-CNTs contents (>1% wt). When subjected to photo-oxidation, the tensile strengths of the samples decreased with the increasing photo-oxidation time. The resistance to accelerated photo-oxidation of PP/MW-CNTs composites was also compared with the photo-oxidation behaviour of the original polypropylene sample. At short photo-oxidation time, such as under 250 h, the rates of carbonyl formation for the PP/MW-CNTs composites are similar to that observed for the original polypropylene but at longer photo-oxidation times the carbonyl formation increases for lower MW-CNTs contents (0.1, 0.2, 0.5 and 0.8% wt), and decreases for higher MW-CNTs contents (1 and 2% wt). It was found that the MW-CNTs showed both anti-degradation and pro-degradation effects at different concentrations.


1999 ◽  
Vol 562 ◽  
Author(s):  
J. P. Lokker ◽  
A. J. Bottger ◽  
G. C. A. M. Janssen ◽  
S. Radelaar

ABSTRACTThe precipitate formation occurring in Al-Cu thin foils with copper concentrations of either 1.15 at.% or 0.3 at.%, has been studied. In-situ X-ray diffraction analysis and differential scanning calorimetry are applied to determine the phases formed and the enthalpy changes in the same samples. Both X-ray diffraction and differential scanning calorimetry indicate that the precipitation behaviour of thin films (about 500 nm thickness) differs significantly from that of bulk material. In the films studied the precipitation of Al2Cu occurs at a much lower temperature than expected on the basis of the (bulk) phase diagram. Moreover, no intermediate phases are observed prior to Al2Cu precipitation. Also the amount of Cu in solid solution (0.20 at%Cu) observed by electron-probe micro-analysis after slowly cooling from 500°C to room temperature, exceeds the solubility of bulk Al-Cu.


2019 ◽  
Vol 52 (6) ◽  
pp. 1264-1270 ◽  
Author(s):  
Yuying Pang ◽  
Asma Buanz ◽  
Richard Telford ◽  
Oxana V. Magdysyuk ◽  
Simon Gaisford ◽  
...  

In this study, the polymorphic transitions of mefenamic acid (MA) were studied by synchrotron X-ray powder diffraction combined with differential scanning calorimetry (XRD-DSC). The initial material was found to be phase-pure form I which, when heated, produces two endotherms that can be observed by DSC at 162.72 and 219.55°C. The former was found to correspond to a solid–solid enantiotropic transition from form I to a mixture of forms II and III. The latter is the melting point of form II. As form I is heated, significantly greater unit-cell expansion is seen in the a direction than in b and c, which can be explained by the stronger intermolecular interactions in the bc plane. Refinements of the reported MA structures against the patterns collected during heating revealed that at 175°C there exists a mixture of forms I, II and III, whereas only forms II and III remain at 205°C. However, reflections are observed at both temperatures which cannot be fitted with the known forms of MA. It is hypothesized that a new form of MA is produced upon heating. The stability of MA after the enantiotropic transition temperature is II > III > I, which differs from the previously reported II > I > III.


Sign in / Sign up

Export Citation Format

Share Document