A three-dimensional micromechanical model to predict the viscoelastic behavior of woven composites

2011 ◽  
Vol 93 (11) ◽  
pp. 2733-2739 ◽  
Author(s):  
Priyank Upadhyaya ◽  
C.S. Upadhyay
2019 ◽  
Vol 1 (1) ◽  
pp. 015028
Author(s):  
Yongqi Yang ◽  
Li Zhang ◽  
Licheng Guo ◽  
Suyang Zhong ◽  
Jiuzhou Zhao ◽  
...  

2001 ◽  
Author(s):  
Xiaodong Tang ◽  
John D. Whitcomb

Abstract The damage initiation and evolution mechanisms in plain and satin weave composites were studied using three-dimensional finite element analysis. The tow paths of the weave were selected such that the wavy region of the tows were identical in both weaves. The damage initiation and evolution behaviors in these comparable wavy regions were compared and discussed in terms of stress components that initiate damage, the overall stress/strain relationship and the accumulation of the damaged volume in the warp tow, fill tow and matrix pockets. The results showed significant similarities in many aspects of the damage behaviors such as damage modes, stiffness loss and damage accumulation processes.


2017 ◽  
Vol 88 (20) ◽  
pp. 2353-2361 ◽  
Author(s):  
Wei Fan ◽  
Dan-dan Li ◽  
Jia-lu Li ◽  
Juan-zi Li ◽  
Lin-jia Yuan ◽  
...  

To investigate the reinforcement architectures effect on the electromagnetic wave properties of carbon fiber reinforced polymer composites, three-dimensional (3D) interlock woven fabric/epoxy composites, 3D interlock woven fabric with stuffer warp/epoxy composites, and 3D orthogonal woven fabric/epoxy composites were studied by the free-space measurement system. The results showed that the three types of 3D woven carbon fiber fabric/epoxy composites had a slight difference in electromagnetic wave properties and the absorption was their dominant radar absorption mechanism. The electromagnetic wave absorption properties of the three types of composites were more than 90% (below −10 dB) over the 11.2–18 GHz bandwidth, and more than 60% (below −4 dB) over the 8–12 GHz bandwidth. Compared with unidirectional carbon fiber reinforced plastics, the three kinds of 3D woven carbon fiber fabric/epoxy composites exhibited better electromagnetic wave absorption properties over a broadband frequency range of 8–18 GHz. Therefore, the three kinds of 3D woven composite are expected to be used as radar absorption structures due to their excellent mechanical properties and outstanding absorption capacity. The total electromagnetic interference shielding effectiveness of the three types of 3D carbon fiber woven composites are all larger than 46 dB over the 8–12 GHz bandwidth, which is evidence that the three types of 3D carbon fiber woven composites can be used as excellent shielding materials for electromagnetic interference.


2019 ◽  
Vol 27 (9) ◽  
pp. 557-566
Author(s):  
Rowan Healey ◽  
Nabil M Chowdhury ◽  
Wing Kong Chiu ◽  
John Wang

Due to the increase in prevalence of fibre-reinforced polymer matrix composites (FRPMC) in aircraft structures, the need for adaption of failure prediction tools such as fatigue spectra has become more pertinent. Fracture toughness is an important measure with regard to fatigue, while adequate techniques and an ASTM standard for unidirectional FRPMC exist, there are mixed opinions when investigating woven FRPMC. This study describes a three-dimensional finite element model developed to assist in determining the mode II interlaminar fracture toughness ( GIIc) of fibre-reinforced woven composites, validated by an experimental and numerical comparison of GIIc determination for unidirectional FRPMC. Experimental testing mirroring the ASTM D7905 resulted in a measure of 1176 J m−2for the unidirectional specimen, while comparisons made with the literature achieved an average value of 1459.24 J m−2or the woven specimen. Three numerical methods were employed due to their prominence in the literature: displacement field, virtual crack closure techniques and the J integral. Both the J integral and the displacement field three-dimensional models produced satisfactory unidirectional GIIc estimates of 1284 and 1116.8 J m−2, respectively. Displacement field had a 5% uncertainty in GIIc when compared with experimental results, while J integral had an approximately 8.5% uncertainty. Extending the analysis to the woven specimens, values of 1302.8 and 1465.3 J m−2were obtained from J integral and displacement field methods, respectively, both within 10% of the experimental values. Hence, numerically determined unidirectional GIIc values were verified with experimental results, leading to the successful employment and extension to woven composites which displayed similar agreement.


Author(s):  
Niloufar Bagheri ◽  
Mahmood M Shokrieh ◽  
Ali Saeedi

The effect of NiTi alloy long wires on the viscoelastic behavior of epoxy resin was investigated by utilizing the dynamic mechanical analysis (DMA) and a novel micromechanical model. The present model is capable of predicting the viscoelastic properties of the shape-memory-alloy (SMA) reinforced polymer as a function of the SMA volume fraction, initial martensite volume fraction, pre-strain level in wires, and the temperature variations. The model was verified by conducting experiments. Good agreement between the theoretical and experimental results was achieved. A parametric study was also performed to investigate the effect of SMA parameters. According to the results, by the addition of a small volume fraction of SMA, the storage modulus of the composite increases significantly, especially at higher temperatures. Moreover, applying a 4% pre-strain caused a 10% increase in the maximum value of the loss factor of the SMA reinforced epoxy in comparison with the 0% pre-strained SMA reinforced epoxy.


2018 ◽  
Vol 38 (2) ◽  
pp. 49-61 ◽  
Author(s):  
M Tarfaoui ◽  
M Nachtane

A series of split Hopkinson pressure bar tests on two-dimensional and three-dimensional woven composites were presented in order to obtain a reliable comparison between the two types of composites and the effect of the z-yarns along the third direction. These tests were done along different configurations: in-plane and out-of-plane compression test. For the three-dimensional woven composite, two different configurations were studied: compression responses along to the stitched direction and orthogonal to the stitched direction. It was found that three-dimensional woven composites exhibit an increase in strength for both: in-plane and out-of-plane tests.


Sign in / Sign up

Export Citation Format

Share Document