Ballistic impact response of Ultra-High-Molecular-Weight Polyethylene (UHMWPE)

2015 ◽  
Vol 133 ◽  
pp. 191-201 ◽  
Author(s):  
Timothy G. Zhang ◽  
Sikhanda S. Satapathy ◽  
Lionel R. Vargas-Gonzalez ◽  
Shawn M. Walsh
2011 ◽  
Vol 332-334 ◽  
pp. 1691-1694
Author(s):  
Dian Tang Zhang ◽  
Bao Dong Li ◽  
Ying Sun ◽  
Ning Pan

The low-velocity impact response of Ultra-High Molecular Weight Polyethylene (UHMWPE) laminated composites were studied by drop-weight experiments. Laminated composites were fabricated with unidirectional UHMWPE prepreg using hot-pressing process. Laminated composites of size 150mm×100mm were subjected to low-velocity impact loading at three energy levels of 15J, 25J and 35J. It is found that the slops of load-time and energy-time curves increase with increase in the impact energy. However, load-time curve shows that there are some fluctuations before the peak load was reached. Peak load and absorbed energy increase with increasing impact energy. However, time to peak load decreases linearly with increasing impact energy.


2020 ◽  
Vol 90 (15-16) ◽  
pp. 1713-1729 ◽  
Author(s):  
Calvin Ralph ◽  
Lisa Baker ◽  
Edward Archer ◽  
Alistair McIlhagger

Typical soft armor systems are constructed of multiple layers of a single fabric type. This empirical research sought to begin optimization of these systems through hybridization, sequencing dissimilar armor fabrics to maximize their ballistic protective performance, by first investigating single plies with a spectrum of properties to determine their behavior and response to impact. Eight individual plain weave fabrics with varying yarns and thread counts were manufactured from para-aramid and ultra-high molecular weight polyethylene (UHMWPE) yarns and physical and ballistic characterizations were conducted. The ballistic impact tests established the specific energy absorption (SEA) of each fabric across a range of impact velocities (340–620 m·s–1) and the transverse displacement wave velocity across the rear of the fabric was found using digital image correlation. Low cover factor ( Cfab) fabrics (0.74–0.84) consistently showed faster transverse wave speed than the high Cfab fabrics (0.84–0.96) for any given yarn type. The relative SEA of the fabrics varied dependent on both the impact velocity and number of plies impacted. It was found that lower Cfab fabrics had the highest SEA, critical velocity and transverse wave velocity. UHMWPE fabrics were not considered suitable for a woven hybrid system as they had a significantly lower SEA compared to all the para-aramid fabrics. Results indicate that a hybrid system, when considered as a theoretical spaced system, would benefit from higher Cfab fabrics as rearward layers. However, transverse wave results suggest the lower response of these fabrics may inhibit lower Cfab fabrics at the front of a combined hybridized system.


2020 ◽  
pp. 004051752096672
Author(s):  
Yi Zhou ◽  
Hang Li ◽  
Ziming Xiong ◽  
Zhongwei Zhang ◽  
Zhongmin Deng

This paper investigates the penetration and energy absorption mechanisms of ultra-high-molecular-weight polyethylene plain weaves with different fabric properties. Impact tests along with finite element (FE) analysis were used to study the impact response of the fabrics. In this research, the impacting projectile did not cause any fiber or yarn failure on the samples. It was found that structural parameters determine the yarn pull-out behavior and the softness of the resultant fabrics. Fabrics formed by loosely interlaced yarns tend to exhibit higher softness and less resistance against yarn pull-out. When the projectile velocity is not sufficient to initiate yarn pull-out, material softness determines the depth of the backface signature on the clay witness. This trend is more pronounced in a multi-ply fabric system than in a single-ply system; when yarn pull-out occurs, the projectile-slowing mechanism depends on the frictional force between the warp and weft yarns. Therefore, fabric softness becomes less important, and the yarn pull-out behavior of the fabric plays a predominant role in energy absorption. FE prediction showed that tightly woven fabrics exhibit a larger area of stress distribution and material deformation than those with severe yarn pull-out and, consequently, these tight fabrics tend to absorb more kinetic energy and sustain higher impact load from a projectile.


Author(s):  
Timothy G. Zhang ◽  
Lionel R. Vargas-Gonzalez ◽  
James C. Gurganus ◽  
Sikhanda S. Satapathy

Abstract Ballistic impact experiments were conducted on three types of Ultra-high-molecular-weight polyethylene (UHMWPE) helmets. The three types of helmets had the same geometry, but different fiber orientations in the rear layers. The test data were used to evaluate the effects of architectures. Five impact locations were chosen to understand the effects of impact locations and curvatures. The experimental data from flat and cylindrically curved UHMWPE panels were also used to compare with the helmet test data.


Author(s):  
Long H. Nguyen ◽  
Torsten R. Lässig ◽  
Shannon Ryan ◽  
Werner Riedel ◽  
Adrian P. Mouritz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document