scholarly journals Molecular foundations of prion strain diversity

Author(s):  
Manfredi Carta ◽  
Adriano Aguzzi
2015 ◽  
Vol 108 (2) ◽  
pp. 386a
Author(s):  
Dominic Narang ◽  
Anup K. Srivastava ◽  
Samrat Mukhopadhyay

2004 ◽  
Vol 78 (17) ◽  
pp. 9270-9276 ◽  
Author(s):  
Mohammed Moudjou ◽  
Eric Treguer ◽  
Human Rezaei ◽  
Elifsu Sabuncu ◽  
Erdi Neuendorf ◽  
...  

ABSTRACT A key feature of prion encephalopathies is the accumulation of a misfolded form of the host glycoprotein PrP. Cell-free and cell culture studies have shown that the efficiency of conversion of PrP into the disease-associated form is influenced by its amino acid sequence and also by its carbohydrate moiety. Here, we characterize four novel glycoform-dependent monoclonal antibodies raised against prokaryotic recombinant sheep PrP. We demonstrate that these antibodies discriminate the PrP monoglycosylated species, since two of them recognize molecules that have the first Asn glycosylation site occupied (mono1) while the other two recognize molecules glycosylated at the second site (mono2). Remarkably, the recognition of PrP by the anti-mono2 antibodies was strongly influenced by the amino acid present at position 171, i.e., either Gln or Arg. This polymorphism is known to be the main determinant of susceptibility and resistance to scrapie in sheep. Altogether, our findings lead us to propose that each glycan chain controls the accessibility of PrP determinants located close upstream from their attachment site. The monoglycoform-assigned and the allotype-restricted antibodies described here, the first to date, should provide further opportunities to investigate the involvement of each glycan chain in PrP conversion in relation to prion strain diversity and the basis of the resistance conferred by the Arg-171 amino acid.


2016 ◽  
Vol 6 (12) ◽  
pp. a024349 ◽  
Author(s):  
Jason C. Bartz

2008 ◽  
Vol 89 (10) ◽  
pp. 2642-2650 ◽  
Author(s):  
Andrea M. Deleault ◽  
Nathan R. Deleault ◽  
Brent T. Harris ◽  
Judy R. Rees ◽  
Surachai Supattapone

Native mammalian prions exist in self-propagating strains that exhibit distinctive clinical, pathological and biochemical characteristics. Prion strain diversity is associated with variations in PrPSc conformation, but it remains unknown precisely which physical properties of the PrPSc molecules are required to encipher mammalian prion strain phenotypes. In this study, we subjected prion-infected brain homogenates derived from three different hamster scrapie strains to either (i) proteinase K digestion or (ii) sonication, and inoculated the modified samples into normal hamsters. The results show that the strain-specific clinical features and neuropathological profiles of inoculated animals were not affected by either treatment. Similarly, the strain-dependent biochemical characteristics of the PrPSc molecules (including electrophoretic mobility, glycoform composition, conformational stability and susceptibility to protease digestion) in infected animals were unaffected by either proteolysis or sonication of the original inocula. These results indicate that the infectious strain properties of native prions do not appear to be altered by PrPSc disaggregation, and that maintenance of such properties does not require the N-domain (approximately residues 23–90) of the protease-resistant PrPSc molecules or protease-sensitive PrPSc molecules.


Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 110 ◽  
Author(s):  
Yuzuru Taguchi ◽  
Hiroki Otaki ◽  
Noriyuki Nishida

The mechanism of prion strain diversity remains unsolved. Investigation of inheritance and diversification of protein-based pathogenic information demands the identification of the detailed structures of abnormal isoforms of the prion protein (PrPSc); however, achieving purification is difficult without affecting infectivity. Similar prion-like properties are recognized also in other disease-associated in-register parallel β-sheet amyloids including Tau and α-synuclein (αSyn) amyloids. Investigations into structures of those amyloids via solid-state nuclear magnetic resonance spectroscopy and cryo-electron microscopy recently made remarkable advances due to their relatively small sizes and lack of post-translational modifications. Herein, we review advances regarding pathogenic amyloids, particularly Tau and αSyn, and discuss implications about strain diversity mechanisms of prion/PrPSc from the perspective that PrPSc is an in-register parallel β-sheet amyloid. Additionally, we present our recent data of molecular dynamics simulations of αSyn amyloid, which suggest significance of compatibility between β-sheet propensities of the substrate and local structures of the template for stability of amyloid structures. Detailed structures of αSyn and Tau amyloids are excellent models of pathogenic amyloids, including PrPSc, to elucidate strain diversity and pathogenic mechanisms.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 124
Author(s):  
Sona Jabang ◽  
Annette Erhart ◽  
Saffiatou Darboe ◽  
Aru-Kumba Baldeh ◽  
Valerie Delforge ◽  
...  

Molecular epidemiological data on Group A Streptococcus (GAS) infection in Africa is scarce. We characterized the emm-types and emm-clusters of 433 stored clinical GAS isolates from The Gambia collected between 2004 and 2018. To reduce the potential for strain mistyping, we used a newly published primer for emm-typing. There was considerable strain diversity, highlighting the need for vaccine development offering broad strain protection.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Dana Willner ◽  
Serene Low ◽  
Jason A. Steen ◽  
Narelle George ◽  
Graeme R. Nimmo ◽  
...  

ABSTRACTUrinary tract infections (UTIs) are one of the most commonly acquired bacterial infections in humans, and uropathogenicEscherichia colistrains are responsible for over 80% of all cases. The standard method for identification of uropathogens in clinical laboratories is cultivation, primarily using solid growth media under aerobic conditions, coupled with morphological and biochemical tests of typically a single isolate colony. However, these methods detect only culturable microorganisms, and characterization is phenotypic in nature. Here, we explored the genotypic identity of communities in acute uncomplicated UTIs from 50 individuals by using culture-independent amplicon pyrosequencing and whole-genome and metagenomic shotgun sequencing. Genus-level characterization of the UTI communities was achieved using the 16S rRNA gene (V8 region). Overall UTI community richness was very low in comparison to other human microbiomes. We strain-typedEscherichia-dominated UTIs using amplicon pyrosequencing of the fimbrial adhesin gene,fimH. There were nine highly abundantfimHtypes, and each UTI sample was dominated by a single type. Molecular analysis of the corresponding clinical isolates revealed that in the majority of cases the isolate was representative of the dominant taxon in the community at both the genus and the strain level. Shotgun sequencing was performed on a subset of eightE. coliurine UTI and isolate pairs. The majority of UTI microbial metagenomic sequences mapped to isolate genomes, confirming the results obtained using phylogenetic markers. We conclude that for the majority of acute uncomplicatedE. coli-mediated UTIs, single cultured isolates are diagnostic of the infection.IMPORTANCEIn clinical practice, the diagnosis and treatment of acute uncomplicated urinary tract infection (UTI) are based on analysis of a single bacterial isolate cultured from urine, and it is assumed that this isolate represents the dominant UTI pathogen. However, these methods detect only culturable bacteria, and the existence of multiple pathogens as well as strain diversity within a single infection is not examined. Here, we explored bacteria present in acute uncomplicated UTIs using culture-independent sequence-based methods.Escherichia coliwas the most common organism identified, and analysis ofE. colidominant UTI samples and their paired clinical isolates revealed that in the majority of infections the cultured isolate was representative of the dominant taxon at both the genus and the strain level. Our data demonstrate that in most cases single cultured isolates are diagnostic of UTI and are consistent with the notion of bottlenecks that limit strain diversity during UTI pathogenesis.


2016 ◽  
Vol 8 (343) ◽  
pp. 343ra81-343ra81 ◽  
Author(s):  
Moran Yassour ◽  
Tommi Vatanen ◽  
Heli Siljander ◽  
Anu-Maaria Hämäläinen ◽  
Taina Härkönen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document