scholarly journals Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment

2008 ◽  
Vol 22 (3) ◽  
pp. 154-161 ◽  
Author(s):  
Fernando Pacheco-Torgal ◽  
J.P. Castro-Gomes ◽  
Said Jalali
Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 219 ◽  
Author(s):  
Johannes Staudt ◽  
Stephan Leyer ◽  
John Duchowski

The change in the wetting behavior of a standard commercially available textile material in response to surface treatment has been thoroughly characterized with conventional laboratory measurement techniques. The characterization was carried out by taking a series of contact angle measurements that allowed for the determination of the corresponding shift in substrate surface energy as a result of the applied treatment. The collected surface energy values were expressed in terms of the spreading parameter S, which was used to describe phase behavior at the substrate/droplet interface. However, these results showed that the use of a coarse parameter S, or even the work of adhesion ( W a ) and the work of cohesion ( W c ) parameters alone did not adequately account for the observed wetting behavior. A proper description of droplet formation on substrate surface was provided only when the interfacial interaction was examined at a more detailed level by involving the individual dispersive ( σ l d , σ s d ) and polar ( σ l p , σ s p ) surface energy components of both the solid and the wetting liquid. The methodology for characterization of interactions between a textile substrate coated with various surface active agents and several functional fluids have been developed. Several practical examples of how this methodology can be applied to describe the substrate surface treatment and the resulting wetting behavior are described herein.


Author(s):  
C.M. Sung ◽  
M. Levinson ◽  
M. Tabasky ◽  
K. Ostreicher ◽  
B.M. Ditchek

Directionally solidified Si/TaSi2 eutectic composites for the development of electronic devices (e.g. photodiodes and field-emission cathodes) were made using a Czochralski growth technique. High quality epitaxial growth of silicon on the eutectic composite substrates requires a clean silicon substrate surface prior to the growth process. Hence a preepitaxial surface cleaning step is highly desirable. The purpose of this paper is to investigate the effect of surface cleaning methods on the epilayer/substrate interface and the characterization of silicon epilayers grown on Si/TaSi2 substrates by TEM.Wafers were cut normal to the <111> growth axis of the silicon matrix from an approximately 1 cm diameter Si/TaSi2 composite boule. Four pre-treatments were employed to remove native oxide and other contaminants: 1) No treatment, 2) HF only; 3) HC1 only; and 4) both HF and HCl. The cross-sectional specimens for TEM study were prepared by cutting the bulk sample into sheets perpendicular to the TaSi2 fiber axes. The material was then prepared in the usual manner to produce samples having a thickness of 10μm. The final step was ion milling in Ar+ until breakthrough occurred. The TEM samples were then analyzed at 120 keV using the Philips EM400T.


2021 ◽  
Vol 212 ◽  
pp. 106222
Author(s):  
Balázs Zsirka ◽  
Veronika Vágvölgyi ◽  
Katalin Győrfi ◽  
Erzsébet Horváth ◽  
Róbert K. Szilágyi ◽  
...  

2008 ◽  
Vol 22 (6) ◽  
pp. 1201-1211 ◽  
Author(s):  
Fernando Pacheco-Torgal ◽  
João Castro-Gomes ◽  
Said Jalali
Keyword(s):  

Author(s):  
Valérie Cappuyns ◽  
Van Axelle Campen ◽  
Srećko Bevandić ◽  
Jillian Helser ◽  
Philippe Muchez

2009 ◽  
Vol 23 (7) ◽  
pp. 2481-2486 ◽  
Author(s):  
Yun Wang Choi ◽  
Yong Jic Kim ◽  
Ook Choi ◽  
Kwang Myong Lee ◽  
Mohamed Lachemi
Keyword(s):  

2017 ◽  
Vol 4 (1) ◽  
Author(s):  
Nick Tepylo ◽  
Rainier Garcia Sanchez ◽  
Xiao Huang

In this study, an Al-containing alloy 214 was evaluated in superheated steam at 800 °C for a duration of 600 h. The purpose of using superheated steam was to simulate the supercritical water (SCW) condition at higher temperatures where no commercial SCW rig is currently capable of reaching (800 °C and beyond). After exposure to superheated steam, the weight change and surface oxidation were analyzed. Alloy 214 experienced greater weight gain than IN 625 and Ni20Cr5Al, due to its low Cr content. Formation of both Cr2O3 and Al2O3 was observed on the surface after 300 and 600 h of exposure. However, as exposure progressed, more Ni and Mn-containing spinel started to form, signaling Cr and Al depletion on the metal substrate surface.


Sign in / Sign up

Export Citation Format

Share Document