Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm

2017 ◽  
Vol 142 ◽  
pp. 199-207 ◽  
Author(s):  
Ali Behnood ◽  
Venous Behnood ◽  
Mahsa Modiri Gharehveran ◽  
Kursat Esat Alyamac
2021 ◽  
Vol 36 (5) ◽  
pp. 33-48
Author(s):  
Mahtab Torkan ◽  
Hamid Kalhori ◽  
Mohammad Hossein Jalalian

Shotcreting is a popular construction technique with wide-ranging applications in mining and civil engineering. Compressive strength is a primary mechanical property of shotcrete with particular importance for project safety, which highly depends on its mix design. But in practice, there is no reliable and accurate method to predict this strength. In this study, existing experimental data related to shotcretes with 59 different mix designs are used to develop a series of soft computing methodologies, including individual artificial neural network, support vector regression, and M5P model tree and their hybrids with the fuzzy c-means clustering algorithm so as to predict the 28-day compressive strength of shotcrete. Analysis of the results shows the superiority of the hybrid model over the individual models in predicting the compressive strength of shotcrete. Overall, data clustering prior to use of machine learning techniques leads to certain improvement in their performance and reliability and generalizability of their results. In particular, the M5P model tree exhibits excellent capability in anticipating the compressive strength of shotcrete.


Alloy Digest ◽  
2005 ◽  
Vol 54 (3) ◽  

Abstract MoldStar 90 is a high-performance beryllium-free copper alloy for the blow-molding and injection-molding industries. This datasheet provides information on composition, physical properties, hardness, tensile properties, and compressive strength. It also includes information on machining, joining, and surface treatment. Filing Code: CU-732. Producer or source: Performance Alloys.


Alloy Digest ◽  
2005 ◽  
Vol 54 (2) ◽  

Abstract MoldStar 150 (formerly PAS 940) is a high performance copper alloy for the blow-molding and injection-molding industries. This datasheet provides information on composition, physical properties, tensile properties, and compressive strength. It also includes information on forming, machining, joining, and surface treatment. Filing Code: CU-729. Producer or source: Performance Alloys.


2004 ◽  
Vol 16 (3) ◽  
pp. 381-390 ◽  
Author(s):  
Meghan Spence ◽  
James A. Newell ◽  
Michael Lynch ◽  
T. J. Lee ◽  
Jenn Demetrio ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Wang ◽  
Shuo Liu ◽  
Qizhi Wang ◽  
Wei Yuan ◽  
Mingzhang Chen ◽  
...  

Based on forced vibration tests for high-performance concrete (HPC), the influence of bridge vibration induced by traveling vehicle on compressive strength and durability of HPC has been studied. It is concluded that 1 d and 2 d compressive strength of HPC decreased significantly, and the maximum reduction rate is 9.1%, while 28 d compressive strength of HPC had a slight lower with a 3% maximal drop under the action of two simple harmonic vibrations with 2 Hz, 3 mm amplitude, and 4 Hz, 3 mm amplitude. Moreover, the vibration had a slight effect on the compressive strength of HPC when the simple harmonic vibration had 4 Hz and 1 mm amplitude; it is indicated that the amplitude exerts a more prominent influence on the earlier compressive strength with the comparison of the frequency. In addition, the impact of simple harmonic vibration on durability of HPC can be ignored; this shows the self-healing function of concrete resulting from later hydration reaction. Thus, the research achievements mentioned above can contribute to learning the laws by which bridge vibration affects the properties of concrete and provide technical support for the design and construction of the bridge deck pavement maintenance.


Sign in / Sign up

Export Citation Format

Share Document