Mechanical Properties of Engineered Cementitious Composite (ECC): An Overview

ICSDEMS 2019 ◽  
2020 ◽  
pp. 259-264
Author(s):  
Nurmazidah Abdullah Zawawi ◽  
Chai Lian Oh ◽  
Siong Wee Lee ◽  
Mohd Raizamzamani Md Zain ◽  
Norrul Azmi Yahya
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jiangtao Yu ◽  
Wenfang Weng ◽  
Kequan Yu

The influence of different cooling regimes (quenching in water and cooling in air) on the residual mechanical properties of engineered cementitious composite (ECC) subjected to high temperature up to 800°C was discussed in this paper. The ECC specimens are exposed to 100, 200, 400, 600, and 800°C with the unheated specimens for reference. Different cooling regimens had a significant influence on the mechanical properties of postfire ECC specimens. The microstructural characterization was examined before and after exposure to fire deterioration by using scanning electron microscopy (SEM). Results from the microtest well explained the mechanical properties variation of postfire specimens.


2013 ◽  
Vol 405-408 ◽  
pp. 2889-2892 ◽  
Author(s):  
Zhi Qin Zhao ◽  
Ren Juan Sun ◽  
Zi Qiang Feng ◽  
Shan Shan Wei ◽  
Da Wei Huang

Engineered Cementitious Composite (ECC) is a fiber reinforced cement based composite material, which systematically designed on the basis of micromechanics and engineered to achieve high ductility under tensile and shear load. The article introduced the development of ECC as advanced construction material, shown different mechanical properties of ECC, tensile strength, compressive strength, bending strength, shear strength. And in light of recent and future full-scale field applications of ECC were also summarized.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mingzhang Lan ◽  
Jian Zhou ◽  
Mingfeng Xu

Engineered cementitious composite (ECC) is a group of ultra-ductile fibre-reinforced cementitious composites, characterised by high ductility and moderate content of short discontinuous fibre. The unique tensile strain-hardening behaviour of ECC results from a deliberate design based on the understanding of micromechanics between fibre, matrix, and fibre–matrix interface. To investigate the effect of fibre properties on the tensile behaviour of ECCs is, therefore, the key to understanding the composite mechanical behaviour of ECCs. This paper presents a study on the fibre-bridging behaviour and composite mechanical properties of ECCs with three types of fibres, including oil-coated polyvinyl alcohol (PVA) fibre, untreated PVA fibre, and polypropylene (PP) fibre. The experimental result reveals that various fibres with different properties result in difference in the fibre-bridging behaviour and composite mechanical properties of ECCs. The difference in the composite mechanical properties of ECCs with different fibres was interpreted by analysing the fibre-bridging behaviour.


2013 ◽  
Vol 40 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Kazim Turk ◽  
Serhat Demirhan

In this study, an experimental program is conducted to understand the effect of the limestone powder (LSP) content replaced by silica sand on the composite properties. For this purpose, five different engineered cementitious composite (ECC) mixtures were adopted: ECC mixture with only silica sand (SS) for control purposes and four ECC mixtures in which SS is partially replaced by four levels of replacements (25%, 50%, 75%, and 100% by weight of total SS) of LSP. The properties of ECC mixtures produced were investigated for the ages of 3, 28, and 90 days. It was concluded that the mechanical properties of the ECC mixtures with LSP were in general higher than the reference mixture with only SS for all curing ages. Increase in the LSP content had a positive effect on the performance of the compressive strength, fracture toughness, and flexural strength at the ages of 3 and 28 days while this was not valid at the age of 90 days when compared to the reference mixture. Also, the ductility of the ECC beams strongly depends on the LSP content and specimen age.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3796
Author(s):  
Qiang Du ◽  
Changlu Cai ◽  
Jing Lv ◽  
Jiao Wu ◽  
Ting Pan ◽  
...  

This study investigated fundamental mechanical properties of a basalt fiber reinforced engineered cementitious composite (BF-ECC) with different volume fractions of basalt fiber (BF), water–binder ratio (W/B) and fly ash (FA) content. The compressive strength, splitting tensile strength, flexural strength and static modulus of BF-ECC were studied at 3, 28 and 56 days, respectively, to explore their development along the ages. Furthermore, the scanning electron microscopy (SEM) analysis was conducted to evaluate the microstructure of BF-ECC. Experiment results demonstrated that bond quality between the BF and the matrix is good, which leads to a significant increase in the flexural strength and splitting tensile strength. The pozzolanic effect of FA obviously improved the splitting tensile and flexural strength of BF-ECC after 56 days of curing, and the appropriate content of the FA content in the BF-ECC ranges from 50% to 60%.


2014 ◽  
Vol 567 ◽  
pp. 428-433 ◽  
Author(s):  
Bashar S. Mohammed ◽  
Muhammad Hafiz Baharun ◽  
Muhd Fadhil Nuruddin ◽  
Odu Paul Duku Erikol ◽  
Nadhir Abdulwahab Murshed

The aim of the research is to develop engineered cementitious composite mixtures satisfying the self-compacting concrete requirements and to evaluate the hardened properties of self-compacted ECC mixtures. To enhance the concrete performance, PVA is used. The PVA improved some characteristics and properties of the concrete. Ten mixes with different Polyvinyl Alcohol (PVA) fiber contents (0.0%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 3.5%, 4.0%, 4.5% and 5.0%) have been prepared. Three cubes (100mm x 100mm x 100mm), three beams (100mm x 100mm x 500mm) and three cylinders (150mm diameter and 300mm height) have been cast for each mix and tested at the age of 7 and 28 days for compressive strength and at age of 28 days for splitting and flexural strength. The V-funnel, L-box and slump test also have been conducted to access the fresh properties like workability and flowability of the concrete. The results indicated the increase in the strength of the concrete and the formulas for predicting the compressive, splitting and flexural strength from PVA (%) has been developed.


2012 ◽  
Vol 626 ◽  
pp. 121-125 ◽  
Author(s):  
Nurdeen M. Altwair ◽  
M.A. Megat Johari ◽  
Syed Fuad Saiyid Hashim ◽  
A.M. Zeyad

Palm oil fuel ash (POFA) was used to produce engineered cementitious composite (ECC) in this research where ECC mixtures containing different volume of POFA (up to 55% by weight) of cement, were prepared. Mechanical properties of the resulting ECC mixtures were assessed using the compression, flexural and uniaxial tensile tests. The findings of the study show that the use of POFA improves the mechanical properties of the ECCs. The ECC mix with 1.2 POFA/cement ratio achieved a compressive strength of 30 MPa at 28 days, which is within the normal range of concrete strength for many applications. Moreover, the results portray that the use of POFA should be helpful for achieving strain-hardening behaviour. The increase in the POFA content concomitantly increased the flexural deflection and tensile strain capacities of the POFA-ECC. Furthermore, crack width of the ECC was significantly decreased with an increase of POFA content. In addition, the resulting POFA-ECC is expected to enhance the material greenness and durability.


Sign in / Sign up

Export Citation Format

Share Document