Life cycle assessment of the ornamental stone processing waste use in cement-based building materials

2020 ◽  
Vol 257 ◽  
pp. 119523
Author(s):  
Robson Zulcão ◽  
João Luiz Calmon ◽  
Thais Ayres Rebello ◽  
Darli Rodrigues Vieira
2019 ◽  
Vol 37 (2) ◽  
pp. 186-195 ◽  
Author(s):  
Thais Ayres Rebello ◽  
Robson Zulcão ◽  
João Luiz Calmon ◽  
Ricardo Franci Gonçalves

Owing to the cost of destination and transportation of ornamental stone processing waste, many studies focused on the reuse and recycling of this product. However, there is a scarcity of articles addressing the environmental viability of the recycling of ornamental stone. In this context, this study comprehends a comparative life cycle assessment of ornamental stone processing waste and conventional materials: sand, clay and limestone filler. The modelling software used was SimaPro 8.3.0.0 with Ecoinvent 3.2 database, employing the ReCiPe H/H methodology for impact assessment. The results show that the recycling of ornamental stone processing waste is environmentally preferable, and the artificial drying alternatives, such as flash dryer and rotary dryer, have lower environmental impact than extracting and processing clay through atomisation methods and limestone filler production. The sensitivity analysis indicated that it is possible to transport the ornamental stone processing waste 37 km after processing, so it reaches the same environmental impact as sand extracted by dredging. On the other hand, an increase of 25% in the energy consumption incremented only 7% of the environmental impact owing to the Brazilian energy mix.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3549
Author(s):  
Tulane Rodrigues da Silva ◽  
Afonso Rangel Garcez de Azevedo ◽  
Daiane Cecchin ◽  
Markssuel Teixeira Marvila ◽  
Mugahed Amran ◽  
...  

The urbanization process contributes to the growth of solid waste generation and causes an increase in environmental impacts and failures in the management of solid waste. The number of dumps is a concern due to the limited implementation and safe disposal of this waste. The interest in sustainable techniques has been growing in relation to waste management, which is largely absorbed by the civil construction sector. This work aimed to review plastic waste, especially polyethylene terephthalate (PET), that can be incorporated with construction materials, such as concrete, mortars, asphalt mixtures, and paving. The use of life-cycle assessment (LCA) is related, as a tool that allows the sustainability of products and processes to be enhanced in the long term. After analyzing the recent literature, it was identified that studies related to plastic wastes in construction materials concentrate sustainability around the alternative destination of waste. Since the plastic waste from different production chains are obtained, it was possible to affirm the need for a broader assessment, such as the LCA, providing greater quantification of data making the alternative processes and products more sustainable. The study contributes to enhance sustainability in alternative building materials through LCA.


Author(s):  
Tracey Anne Colley ◽  
Judith Valerian ◽  
Michael Zwicky Hauschild ◽  
Stig Irving Olsen ◽  
Morten Birkved

Nutrient depletion in Tanzanian sisal production has led to yield decreases over time. We use nutrient mass balances embedded within a life cycle assessment to quantify the extent of nutrient depletion for different production systems, then used circular economy principles to identify potential cosubstrates from within the Tanzanian economy to anaerobically digest with sisal wastes. The biogas produced is then used to generate bioelectricity and the digestate residual can be used as a fertilizer to address the nutrient depletion. If no current beneficial use of the cosubstrate was assumed, then beef manure and marine fish processing waste were the best cosubstrates. If agricultural wastes were assumed to have a current beneficial use as fertilizer, then marine fish processing waste and human urine were the best cosubstrates. The largest reduction in environmental impacts resulted from bioelectricity replacing electricity from fossil fuels in the national electricity grid and improved onsite waste management practices. There is significant potential to revitalize Tanzanian sisal production by applying circular economy principles to sisal waste management and bioenergy production.


2020 ◽  
Vol 12 (14) ◽  
pp. 5666 ◽  
Author(s):  
Girts Bumanis ◽  
Laura Vitola ◽  
Ina Pundiene ◽  
Maris Sinka ◽  
Diana Bajare

To decrease the environmental impact of the construction industry, energy-efficient insulation materials with low embodied production energy are needed. Lime-hemp concrete is traditionally recognized as such a material; however, the drawbacks of this type of material are associated with low strength gain, high initial moisture content, and limited application. Therefore, this review article discusses alternatives to lime-hemp concrete that would achieve similar thermal properties with an equivalent or lower environmental impact. Binders such as gypsum, geopolymers, and starch are proposed as alternatives, due to their performance and low environmental impact, and available research is summarized and discussed in this paper. The summarized results show that low-density thermal insulation bio-composites with a density of 200–400 kg/m3 and thermal conductivity (λ) of 0.06–0.09 W/(m × K) can be obtained with gypsum and geopolymer binders. However, by using a starch binder it is possible to produce ecological building materials with a density of approximately 100 kg/m3 and thermal conductivity (λ) as low as 0.04 W/(m × K). In addition, a preliminary life cycle assessment was carried out to evaluate the environmental impact of reviewed bio-composites. The results indicate that such bio-composites have a low environmental impact, similar to lime-hemp concrete.


2020 ◽  
Vol 993 ◽  
pp. 1473-1480
Author(s):  
Yan Jiao Zhang ◽  
Li Ping Ma ◽  
Shi Wei Ren ◽  
Meng Chi Huang ◽  
Ying Wang ◽  
...  

With the emphasis of national policies on green manufacturing and the recognition of the people for green development, expanding the green assessment of products will be the general trend. In this study the life cycle assessment method was used to compile a list of resources, energy consumption and pollutant emissions during the life cycle of typical ordinary gypsum plasterboard and functional phase-change gypsum plasterboard, the key environmental impact indicators of both products during the life cycle calculated, the key stages affecting the environmental performance of products analyzed and identified, and the difference in environmental impacts between phase-change gypsum plasterboard and ordinary gypsum plasterboard compared and analyzed, for guiding the selection of green building materials and the development of ecological building materials. The results show that the global warming potential of phase-change gypsum plasterboard is 3.42 kgCO2 equivalent/m2, the non-renewable resource depletion potential is 2.25×10-5 kgSb equivalent/m2, the respiratory inorganic is 1.97×10-3 kgPM2.5 equivalent/m2, the eutrophication is 1.21×10-3 kgPO43- equivalent/m2, and the acidification is 9.47×10-3 kgSO2 equivalent/m2. Compared with ordinary gypsum plasterboard, the phase-change gypsum plasterboard shows the biggest increase by 874.03% in non-renewable resource depletion potential. The major environmental impact of ordinary gypsum plasterboard in the life cycle is mainly from energy use, and the transport process is the main stage of eutrophication. The use of phase-change materials in the phase-change gypsum plasterboard is the main stage causing environmental impact.


2020 ◽  
Vol 993 ◽  
pp. 1534-1544
Author(s):  
Ning Liu ◽  
Yu Liu ◽  
Xian Zheng Gong ◽  
Li Wei Hao ◽  
Feng Gao ◽  
...  

In recent years, the building materials industry in China has made great progress in the R&D of energy conservation, emission reduction and cleaner production technologies, in order to implement sustainable development policy. Life cycle assessment (LCA) is one of the mainstream method to analyze the environmental impact of product during its life cycle, which plays an important role on ecological design of building materials and development of green manufacture technology in recent year. This paper reviewed the LCA studies of building materials. Firstly, the development of China's building materials industry and technical framework of LCA standardized by ISO14040/14044 were introduced. Moreover, the typical LCA case studies of cement, glass, ceramics, wall materials, insulation materials and other building materials were reviewed. At last, some prospects for future research and development in this field were put forward.


2020 ◽  
Author(s):  
Omar Hijazi ◽  
Maria Haslbeck ◽  
Mona Maze ◽  
Mohamed Samer ◽  
Maximilian Treiber ◽  
...  

2020 ◽  
Vol 12 (4) ◽  
pp. 1566 ◽  
Author(s):  
Yu Dong ◽  
Tongyu Qin ◽  
Siyuan Zhou ◽  
Lu Huang ◽  
Rui Bo ◽  
...  

Many stadiums will be built in China in the next few decades due to increasing public interest in physical exercise and the incentive policies issued by the government under its National Fitness Program. This paper investigates the energy saving and carbon reduction performance of timber stadiums in China in comparison with stadiums constructed using conventional building materials, based on both life cycle energy assessment (LCEA) and life cycle carbon assessment (LCCA). The authors select five representative cities in five climate zones in China as the simulation environment, simulate energy use in the operation phase of stadiums constructed from reinforced concrete (RC) and timber, and compare the RC and timber stadiums in terms of their life cycle energy consumption and carbon emissions. The LCEA results reveal that the energy saving potential afforded by timber stadiums is 11.05%, 12.14%, 8.15%, 4.61% and 4.62% lower than those of RC buildings in “severely cold,” “cold,” “hot summer, cold winter,” “hot summer, warm winter,” and “temperate” regions, respectively. The LCCA results demonstrate that the carbon emissions of timber stadiums are 15.85%, 15.86%, 18.88%, 19.22% and 22.47% lower than those of RC buildings for the regions above, respectively. This demonstrates that in China, timber stadiums have better energy conservation and carbon reduction potential than RC stadiums, based on life cycle assessment. Thus, policy makers are advised to encourage the promotion of timber stadiums in China to achieve the goal of sustainable energy development for public buildings.


2017 ◽  
Vol 1 (1) ◽  
pp. 91-108
Author(s):  
Maurizio Cellura ◽  
Francesco Guarino ◽  
Sonia Longo

The building sector is one of the most relevant in terms of generation of wealth and occupation, but it is also responsible for significant consumption of natural resources and the generation of environmental impacts, mainly greenhouse gas emissions. In order to improve the eco profile of buildings during their life-cycle, the reduction of the use of resources and the minimization of environmental impacts have become, in the last years, some of the main objectives to achieve in the design of sustainable buildings. The application of the life-cycle thinking approach, looking at the whole life cycle of buildings, is of paramount importance for a real decarbonization and reduction of the environmental impacts of the building sector. This paper presents an application of the life-cycle assessment methodology for assessing the energy and environmental life-cycle impacts of a single-family house located in the Mediterranean area in order to identify the building components and life-cycle steps that are responsible of the higher burdens. The assessment showed that the largest impacts are located in the use stage; energy for heating is significant but not dominant, while the contribution of electricity utilized for households and other equipment resulted very relevant. High environmental impacts are also due to manufacture and transport of building materials and components.


Sign in / Sign up

Export Citation Format

Share Document