A simple optimized foam generator and a study on peculiar aspects concerning foams and foamed concrete

2021 ◽  
Vol 268 ◽  
pp. 121101 ◽  
Author(s):  
Devid Falliano ◽  
Luciana Restuccia ◽  
Ernesto Gugliandolo
2018 ◽  
Vol 7 (3.10) ◽  
pp. 66
Author(s):  
T Subramani ◽  
R Amul

Foam concrete is a form of aerated lightweight concrete. Foamed concrete has emerged as most industrial fabric in Production Company. Foam concrete is produced while pre-fashioned foam is brought to slurry, the characteristic of froth is to create an air voids in cement–primarily based absolutely slurry. Foam is generated one by one via using foam generator; the foaming agent is diluted with water and aerated to create the froth. The cement paste or slurry set throughout the foam bubbles and whilst the froth being to degenerate, the paste has enough power to keep its form around the air voids. Consequently, this study investigates bodily and mechanical residences of foamed concrete. Ultimately comparative analyses had been finished to decide the relationships the various numerous mechanical homes parameters of the foamed concrete, especially the compressive strength, flexural electricity, splitting tensile electricity. The specimen analysed by means of the usage of the use of e- tab software program.  


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Mohamed Abd Elrahman ◽  
Pawel Sikora ◽  
Sang-Yeop Chung ◽  
Dietmar Stephan

AbstractThis paper aims to investigate the feasibility of the incorporation of nanosilica (NS) in ultra-lightweight foamed concrete (ULFC), with an oven-dry density of 350 kg/m3, in regard to its fresh and hardened characteristics. The performance of various dosages of NS, up to 10 wt.-%, were examined. In addition, fly ash and silica fume were used as cement replacing materials, to compare their influence on the properties of foamed concrete. Mechanical and physical properties, drying shrinkage and the sorption of concrete were measured. Scanning electron microscopy (SEM) and X-ray microcomputed tomography (µ-CT) and a probabilistic approach were implemented to evaluate the microstructural changes associated with the incorporation of different additives, such as wall thickness and pore anisotropy of produced ULFCs. The experimental results confirmed that the use of NS in optimal dosage is an effective way to improve the stability of foam bubbles in the fresh state. Incorporation of NS decrease the pore anisotropy and allows to produce a foamed concrete with increased wall thickness. As a result more robust and homogenous microstructure is produced which translate to improved mechanical and transport related properties. It was found that replacement of cement with 5 wt.-% and 10 wt.-% NS increase the compressive strength of ULFC by 20% and 25%, respectively, when compared to control concrete. The drying shrinkage of the NS-incorporated mixes was higher than in the control mix at early ages, while decreasing at 28 d. In overall, it was found that NS is more effective than other conventional fine materials in improving the stability of fresh mixture as well as enhancing the strength of foamed concrete and reducing its porosity and sorption.


2021 ◽  
Author(s):  
M. Agung Prasetyo J. ◽  
Saloma ◽  
Hanafiah ◽  
Ika Juliantina ◽  
M. Lindung Persada P. W.
Keyword(s):  
Fly Ash ◽  

2021 ◽  
Vol 173 ◽  
pp. 110938
Author(s):  
Lang Jin ◽  
Shan Chen ◽  
Yang Zhao ◽  
Qiang Zeng ◽  
Zunpeng Huang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2967
Author(s):  
Rokiah Othman ◽  
Ramadhansyah Putra Jaya ◽  
Khairunisa Muthusamy ◽  
MohdArif Sulaiman ◽  
Youventharan Duraisamy ◽  
...  

This study aims to obtain the relationship between density and compressive strength of foamed concrete. Foamed concrete is a preferred building material due to the low density of its concrete. In foamed concrete, the compressive strength reduces with decreasing density. Generally, a denser foamed concrete produces higher compressive strength and lower volume of voids. In the present study, the tests were carried out in stages in order to investigate the effect of sand–cement ratio, water to cement ratio, foam dosage, and dilution ratio on workability, density, and compressive strength of the control foamed concrete specimen. Next, the test obtained the optimum content of processed spent bleaching earth (PSBE) as partial cement replacement in the foamed concrete. Based on the experimental results, the use of 1:1.5 cement to sand ratio for the mortar mix specified the best performance for density, workability, and 28-day compressive strength. Increasing the sand to cement ratio increased the density and compressive strength of the mortar specimen. In addition, in the production of control foamed concrete, increasing the foam dosage reduced the density and compressive strength of the control specimen. Similarly with the dilution ratio, the compressive strength of the control foamed concrete decreased with an increasing dilution ratio. The employment of PSBE significantly influenced the density and compressive strength of the foamed concrete. An increase in the percentage of PSBE reduced the density of the foamed concrete. The compressive strength of the foamed concrete that incorporated PSBE increased with increasing PSBE content up to 30% PSBE. In conclusion, the compressive strength of foamed concrete depends on its density. It was revealed that the use of 30% PSBE as a replacement for cement meets the desired density of 1600 kg/m3, with stability and consistency in workability, and it increases the compressive strength dramatically from 10 to 23 MPa as compared to the control specimen. Thus, it demonstrated that the positive effect of incorporation of PSBE in foamed concrete is linked to the pozzolanic effect whereby more calcium silicate hydrate (CSH) produces denser foamed concrete, which leads to higher strength, and it is less pore connected. In addition, the regression analysis shows strong correlation between density and compressive strength of the foamed concrete due to the R2 being closer to one. Thus, production of foamed concrete incorporating 30% PSBE might have potential for sustainable building materials.


Sign in / Sign up

Export Citation Format

Share Document