Hydrophobic treatment of bamboo with rosin

Author(s):  
Na Su ◽  
Changhua Fang ◽  
Hui Zhou ◽  
Tong Tang ◽  
Shuqin Zhang ◽  
...  
2014 ◽  
Vol 1663 ◽  
Author(s):  
Dmitry Fomitchev ◽  
Russell Lewis ◽  
Hairuo Tu ◽  
Li Cheng ◽  
Hajime Kambara ◽  
...  

ABSTRACTWe report on a new class of materials for laser printer toner applications. These materials were prepared from methacrysilane-in-water emulsions stabilized with colloidal silica particles. In this elegant system, the colloidal silica particles reside at the water/oil interface helping to emulsify the oil droplet, self-organizing into a raspberry-like morphology. The emulsion formation is followed by free-radical polymerization, hydrophobic treatment, and drying steps. This one pot synthesis in water affords a hydrophobic material with a particle size in the range of 80 to 300 nm. The particle size could be fine-tuned by changing the oil-to-silica mass ratio or by using colloidal silica particles of different sizes. Results of material characterization by solid-state NMR, electron microscopy, and particle size measurements methods will be presented. Examples of possible extensions of the synthesis towards materials with methacrylsilane partially substituted with other methacrylates will be provided. Application of the new material in toners will be described as will the comparison of its performance with the incumbent material - hydrophobic colloidal silica.


Chemosensors ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 30 ◽  
Author(s):  
Vladimír Pitschmann ◽  
Lukáš Matějovský ◽  
Kamila Lunerová ◽  
Michal Dymák ◽  
Martin Urban ◽  
...  

This work provides a summary of our results in the area of the experimental development of detection paper for the detection of liquid phase chemical warfare agents (drops, aerosol), the presence of which is demonstrated by the development of characteristic coloring visible to the naked eye. The basis of the detection paper is a cellulose carrier saturated with the dithienobenzotropone monomer (RM1a)–chromogenic chemosensor sensitive to nerve agents of the G type, blister agent lewisite, or choking agent diphosgene. We achieve a higher coloring brilliance and the limit certain interferences by using this chemosensor in the mix of the o-phenylendiamine-pyronine (PY-OPD). We prove that the addition of the Bromocresol Green pH indicator even enables detection of nerve agents of the V type, or, nitrogen mustards, while keeping a high stability of the detection paper and its functions for other chemical warfare agents. We resolve the resistance against the undesirable influence of water by providing a hydrophobic treatment of the carrier surface.


2019 ◽  
Vol 9 (9) ◽  
pp. 1914 ◽  
Author(s):  
Hao-Kai Peng ◽  
Yanting Wang ◽  
Ting-Ting Li ◽  
Ching-Wen Lou ◽  
Qi He ◽  
...  

Electromagnetic pollution interferes with electronic equipment in proximity and jeopardizes human health, which urges the development of electromagnetic interference (EMI) shielding materials. It is urgent to develop electromagnetic interference (EMI) shielding materials. However, the preparation of materials with superhydrophobicity, flame retardancy and EMI shielding properties is still challenging. In this study, we invented a core-spun yarn feeding device, which uses polysulfonamide (PSA) roving as a coating material and stainless steel wire as the core material to prepare a conductive core-spun yarn, which solves the problem of the wire having an easily exposed fabric surface. The finally prepared conductive fabric was subjected to Waterproof 2P hydrophobic treatment to form a superhydrophobic flame-retardant EMI shielding fabric. The results show that the hydrophobic treatment creates a thin film over the woven fabrics, and the contact angle of the fabric surface can reach 155°. The hydrophobic treatment will not damage the shielding effect and slightly increase the dB value. The average dB value of PSA-SS-1’ and PSA-SS-2’ are increased by 0.82 dB and 1.92 dB, respectively. When composed of conductive wrapped yarns for both the warp and weft yarns, the electromagnetic interference shielding effectiveness (EMI SE) of conductive fabrics is beyond 30 dB at 0–3000 MHz and the burnt depth is shorter than 40 mm. As for real applications, superhydrophobic/flame retardant/EMI SE fabrics can be used in a moist and complex environment with retaining conductivity and shielding effectiveness.


2014 ◽  
Vol 9 (3) ◽  
pp. 155892501400900 ◽  
Author(s):  
Marzieh Parhizkar ◽  
Yan Zhao ◽  
Xunagi Wang ◽  
Tong Lin

Photochromic fabrics were prepared by a dip-coating method using a silica sol-gel solution containing photochromic dyes. The coated fabric showed a rapid photochromic response. Three methods; incorporating a UV stabilizer in the coating layer, hydrophobic treatment of the porous surface, and covering the coating layer with an additional silica layer; were used to improve the photostability and durability. All three treatments improved the photostability without noticeably changing the photochromic response/fading speeds. Most of the treatments reduced the washing and abrasion durability. The extra coating layer increased the fabric rigidity.


2005 ◽  
Vol 29 (6) ◽  
pp. 733-741 ◽  
Author(s):  
A. Frattolillo ◽  
G. Giovinco ◽  
M.C. Mascolo ◽  
A. Vitale

Sign in / Sign up

Export Citation Format

Share Document