A review of waste-containing building materials: Characterization of the heavy metal

2021 ◽  
Vol 309 ◽  
pp. 125107
Author(s):  
Zongxian Huang ◽  
Kuisheng Liu ◽  
Jinsong Duan ◽  
Qiang Wang
Clay Minerals ◽  
2013 ◽  
Vol 48 (4) ◽  
pp. 655-662 ◽  
Author(s):  
A. Nzeukou Nzeugang ◽  
R. Medjo Eko ◽  
N. Fagel ◽  
V. Kamgang Kabeyene ◽  
A. Njoya ◽  
...  

AbstractClayey deposits of Nanga-Eboko (central Cameroon) were studied to assess their potential as building materials. Characterization was performed using XRD, FTIR, XRF, DTA/DTG and firing testing. Clays appear as discontinuous pockets with the same textural characteristics in three villages located on both sides of the Sanaga River. The average thickness of the exploitable layer is about 3m. The estimated tonnage ∼7–17×105 m3 can supply a brick industry of great importance. SiO2 (∼70%), Al2O3 (∼15%) and Fe2O3 (∼4%) are the predominant oxides of the natural clays. Quartz (∼55%), kaolinite (∼33%), illite (∼5%) and K-feldspar (∼4%) are major minerals. Clays are not suitable for building construction due to their fine-grained size and high plasticity properties. Firing properties of bricks (950 and 1050°C) are good despite the high shrinkage values. Therefore the addition of “degreasers” is recommended to control shaping and drying.


1983 ◽  
Vol 26 ◽  
Author(s):  
Christine A. Langton ◽  
Della M. Roy

ABSTRACTDurability and long-term stability of cements in plasters, mortars, and/or concretes utilized as borehole plugging and shaft sealing materials are of present concern in the national effort to isolate nuclear waste within deep geological repositories. The present study consists of an examination of selected ancient building materials and provides insights into the durability of certain ancient structures. These data were combined with knowledge obtained from the behavior of modern portland cements and natural materials to evaluate the potential for longevity of such materials in a borehole environment. Analyses were conducted by petrographic, SEM, chemical, and x-ray diffraction techniques.


2018 ◽  
Vol 25 (8) ◽  
pp. 767-775
Author(s):  
Hongwei Ding ◽  
Jun Zhou ◽  
Yu Han ◽  
Xiurong Su
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3564
Author(s):  
Arnas Majumder ◽  
Laura Canale ◽  
Costantino Carlo Mastino ◽  
Antonio Pacitto ◽  
Andrea Frattolillo ◽  
...  

The building sector is known to have a significant environmental impact, considering that it is the largest contributor to global greenhouse gas emissions of around 36% and is also responsible for about 40% of global energy consumption. Of this, about 50% takes place during the building operational phase, while around 10–20% is consumed in materials manufacturing, transport and building construction, maintenance, and demolition. Increasing the necessity of reducing the environmental impact of buildings has led to enhancing not only the thermal performances of building materials, but also the environmental sustainability of their production chains and waste prevention. As a consequence, novel thermo-insulating building materials or products have been developed by using both locally produced natural and waste/recycled materials that are able to provide good thermal performances while also having a lower environmental impact. In this context, the aim of this work is to provide a detailed analysis for the thermal characterization of recycled materials for building insulation. To this end, the thermal behavior of different materials representing industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated materials were able to improve not only the energy performances but also the environmental comfort in both new and in existing buildings. In particular, plasters and mortars with recycled materials and with natural fibers showed, respectively, values of thermal conductivity (at 20 °C) lower than 0.475 and 0.272 W/(m⋅K), while that of building materials with natural fibers was always lower than 0.162 W/(m⋅K) with lower values for compounds with recycled materials (0.107 W/(m⋅K)). Further developments are underway to analyze the mechanical properties of these materials.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2967
Author(s):  
Seunghoon Choi ◽  
Sungjin Park ◽  
Minjoo Park ◽  
Yerin Kim ◽  
Kwang Min Lee ◽  
...  

Biomineralization, a well-known natural phenomenon associated with various microbial species, is being studied to protect and strengthen building materials such as concrete. We characterized Rhodococcus erythreus S26, a novel urease-producing bacterium exhibiting CaCO3-forming activity, and investigated its ability in repairing concrete cracks for the development of environment-friendly sealants. Strain S26 grown in solid medium formed spherical and polygonal CaCO3 crystals. The S26 cells grown in a urea-containing liquid medium caused culture fluid alkalinization and increased CaCO3 levels, indicating that ureolysis was responsible for CaCO3 formation. Urease activity and CaCO3 formation increased with incubation time, reaching a maximum of 2054 U/min/mL and 3.83 g/L, respectively, at day four. The maximum CaCO3 formation was achieved when calcium lactate was used as the calcium source, followed by calcium gluconate. Although cell growth was observed after the induction period at pH 10.5, strain S26 could grow at a wide range of pH 4–10.5, showing its high alkali tolerance. FESEM showed rhombohedral crystals of 20–60 µm in size. EDX analysis indicated the presence of calcium, carbon, and oxygen in the crystals. XRD confirmed these crystals as CaCO3 containing calcite and vaterite. Furthermore, R. erythreus S26 successfully repaired the artificially induced large cracks of 0.4–0.6 mm width.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3079
Author(s):  
Beata Jaworska ◽  
Dominika Stańczak ◽  
Joanna Tarańska ◽  
Jerzy Jaworski

The generation of energy for the needs of the population is currently a problem. In consideration of that, the biomass combustion process has started to be implemented as a new source of energy. The dynamic increase in the use of biomass for energy generation also resulted in the formation of waste in the form of fly ash. This paper presents an efficient way to manage this troublesome material in the polymer–cement composites (PCC), which have investigated to a lesser extent. The research outlined in this article consists of the characterization of biomass fly ash (BFA) as well as PCC containing this waste. The characteristics of PCC with BFA after 3, 7, 14, and 28 days of curing were analyzed. Our main findings are that biomass fly ash is suitable as a mineral additive in polymer–cement composites. The most interesting result is that the addition of biomass fly ash did not affect the rheological properties of the polymer–cement mortars, but it especially influenced its compressive strength. Most importantly, our findings can help prevent this byproduct from being placed in landfills, prevent the mining of new raw materials, and promote the manufacture of durable building materials.


2019 ◽  
Vol 34 (5) ◽  
pp. 854-859 ◽  
Author(s):  
Sofia Pessanha ◽  
Sara Silva ◽  
Luís Martins ◽  
José Paulo Santos ◽  
João M. Silveira

In this work, we established a methodology for the analysis and characterization of hydroxyapatite-based materials using X-ray fluorescence.


Sign in / Sign up

Export Citation Format

Share Document