Flexural performance of reinforced beams made with composite ferronickel slag concrete

2021 ◽  
Vol 310 ◽  
pp. 125251
Author(s):  
Xuhong Liu ◽  
Shanghong Chen ◽  
Ai Qi ◽  
Wei Lin ◽  
Huanqiang Wu
2012 ◽  
Vol 466-467 ◽  
pp. 225-228
Author(s):  
Kan Kang ◽  
Peng Zhang ◽  
Feng Tao Liu

Based on the the self-developed prestressed CFRP plate anchorage,the test specimens comprised 5 RC beams strengthened with the way the external prestressed CFRP plates,the research on the different prestressed tension and different span beam about the influence of the bending capacity , ultimate bearing capacity,cross section strain, CFRP strain and deflection of the test reinforced beams on the research. The test results showed that: the externally prestressed CFRP plate can obviously increase of the flexural performance of RC beams, and improve the utilization rate of the strength of the CFRP plate, through the external prestressed anchor of CFRP plate for a tension, reducing the RC beams crack, and improving the ductility of the RC beams.


2020 ◽  
Vol 4 (4) ◽  
pp. 187
Author(s):  
Janeshka Goonewardena ◽  
Kazem Ghabraie ◽  
Mahbube Subhani

Fibre-reinforced polymer (FRP) rebar and geopolymer concrete (GPC) are relatively new construction materials that are now been increasingly used in the construction sectors. Both materials exhibit superior structural and durability properties that also make them a sustainable alternative solution. Due to the absence of any design standard for an FRP-reinforced GPC beam, it is important to validate the efficacy of available standards and literature related to other materials, e.g., FRP-reinforced conventional concrete or GPC alone. Four theories/design standards are considered for this comparison—ACI440.1R-15, CAN/CSA S806-12, parabolic stress block theory, and equivalent rectangular stress block theory for GPC under compression. The accuracy of these four approaches is also examined by studying the flexural performance of both the glass FRP (GFRP) and carbon FRP (CFRP). The FRP-reinforced beams are designed against the actual load they will be subjected to in a real-world scenario. It is concluded that parabolic stress block theory over-estimates the capacity, whereas CSA S806-12 yields the most accurate and conservative results. In addition, the flexural performance of the FRP-reinforced beams is evaluated in terms of ultimate, cracking, and service moment capacity, along with serviceable, ultimate, and residual deflection.


2014 ◽  
Vol 525 ◽  
pp. 412-415
Author(s):  
Seok Joon Jang ◽  
Seung Ju Han ◽  
Zhong Jie Yu ◽  
Hyun Do Yun

This paper describes the flexural behaviors of double reinforced beams with strain hardening cement-based composite (SHCC) materials and high-performance steel bar (HPSB). To evaluate the effects of cement composite type and strength on flexural response of reinforced beam, three specimens made and tested under monotonic flexural loading. Test results indicated that superior flexural and uniaxial performance with multiple fine cracking are observed for SHCC materials compared to those of conventional high strength concrete (HSC). Specifically, HPSB reinforced beam with SHCC materials exhibits more effectively crack-damage mitigation and flexural performance than that with HSC.


2019 ◽  
Vol 7 (12) ◽  
pp. 1295-1307
Author(s):  
Xizhi Wu ◽  
Xueyou Huang ◽  
Xianjun Li ◽  
Yiqiang Wu

2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


2017 ◽  
Vol 748 (5) ◽  
pp. 52-55
Author(s):  
E.E. KADOMTSEVA ◽  
◽  
L.V. MORGUN ◽  
N.I. BESKOPYLNAYA ◽  
V.N. MORGUN ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2809
Author(s):  
Md. Akter Hosen ◽  
Fadi Althoey ◽  
Mohd Zamin Jumaat ◽  
U. Johnson Alengaram ◽  
N. H. Ramli Sulong

Reinforced concrete (RC) structures necessitate strengthening for various reasons. These include ageing, deterioration of materials due to environmental effects, trivial initial design and construction, deficiency of maintenance, the advancement of design loads, and functional changes. RC structures strengthening with the carbon fiber reinforced polymer (CFRP) has been used extensively during the last few decades due to their advantages over steel reinforcement. This paper introduces an experimental approach for flexural strengthening of RC beams with Externally-Side Bonded Reinforcement (E-SBR) using CFRP fabrics. The experimental program comprises eight full-scale RC beams tested under a four-point flexural test up to failure. The parameters investigated include the main tensile steel reinforcing ratio and the width of CFRP fabrics. The experimental outcomes show that an increase in the tensile reinforcement ratio and width of the CFRP laminates enhanced the first cracking and ultimate load-bearing capacities of the strengthened beams up to 141 and 174%, respectively, compared to the control beam. The strengthened RC beams exhibited superior energy absorption capacity, stiffness, and ductile response. The comparison of the experimental and predicted values shows that these two are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document