Strength evaluation of soil stabilized with nano silica- cement mixes as road construction material

2022 ◽  
Vol 314 ◽  
pp. 125363
Author(s):  
Prasanna P. Kulkarni ◽  
J.N. Mandal
2011 ◽  
Vol 250-253 ◽  
pp. 1001-1006 ◽  
Author(s):  
De Zhen Chen ◽  
Cui Jie Geng ◽  
Wen Zhou Sun

Evaluation indexes system has been put forward in this paper for quantifying thesystematical energy consumption, resources consumption, total emissions’ change and waste disposal capacity in road construction with recycled waste materials involved. With help of this evaluation indexes system, the contributions to environmental improvement caused by recycling waste materials in road construction can be quantified through calculating savings on environmental impact potentials, savings on energy consumption, on virgin materials’ consumption and waste disposal capacity provided by road construction. Based on the construction project of a road section numbered No.20 EWK0+400 ~ EWK0+600 of North highway to Shanghai Pudong international airport, which was the first trial project of using several kinds of recycled waste materials including bottom ash from incinerators to replace commonly used materials such as gravel in large scale in road pavement, the results of the four indexes, namely, savings on energy consumption and virgin materials’ consumption, environmental impact potentials as well as waste disposal capacity were obtained. It was found out that with multi recycled waste materials replacing part of the common construction material, systematical energy consumption can be reduced by 30%, a large amount of virgin resource consumption can be avoid and road construction also provides a remarkable large “dumping site” for solid wastes; while at the same time environmental impact potentials were saved for most impact categories except for increase in Ecotoxicity, water chronic, which was caused by heavy metals’ leaching and can be prevented by pre-treatment. Those results are useful for guiding the utilization of recycled waste materials, as well as for developing new technology process and advanced materials in road construction.


2007 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
S. Hassim ◽  
K.T. Teh ◽  
R. Muniandy ◽  
H. Omar ◽  
A. Hassan

A prototype for an expert system in road construction material selection system, which is based on the outcomes of Friedman and multiple comparisons statistical methods was developed. The outcomes were acquired through questionnaires from selected pavement experts. The factors affecting pavement materials under each particular site condition were incorporated into the specific rules of the system. The system knowledge-base was extracted from the statistical testing outcomes and then rearranged and compiled prior to the development of the system. Visual Basic 6.0 was adopted as the programming tool for development of the system, while the knowledge-base of the separate system was kept in Microsoft Access 2000. The prototype expert system can be used to emulate part of the professional reasoning capabilities based on the knowledge of a pavement expert or a specialist to solve problems on materials selection. The system can help road designers to improve their professional ability to evaluate all available materials even before carrying out any laboratory tests.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Sarath Chandra K ◽  
Krishnaiah S ◽  
Kibebe Sahile

Industrialization is the key to the growth of any country’s economy. However, on the other hand, the production of industrial waste is increasing enormously, which adversely impacts the environment and natural resources. Red mud is also a widespread industrial waste produced during aluminium extraction from bauxite ore in Bayer’s process. Red mud is a highly alkaline material that creates a massive environmental threat in nature. To reduce the impact of this solid waste material, the ideal method is to use it in construction works with appropriate stabilization. This study envisages the strength properties of red mud with fly ash and cement to use it as a road construction material in the subgrade. The influence of fly ash and cement on improving the strength properties of red mud was studied in detail by replacing red mud with 10%, 20%, and 30% with fly ash and 1%, 3%, and 5% of cement to its dry weight. The CBR (California bearing ratio) value was increased from 1.58% to 11.6% by stabilizing red mud with fly ash and cement, which can be used as a road construction material. The UCS (unconfined compressive strength) of red mud was increased from 825 kPa to 2340 kPa upon curing for 28 days with the right mix of fly ash and cement. Along with the strength properties, the chemical analysis of leachate for the best suitable mix was performed according to the TCLP method to understand the hazardous materials present in the red mud when it is injected as ground material. Both strength properties and the leachate characteristics prove that the red mud with suitable fly ash and cement is an excellent material in road constructions.


2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Grace Kurniawati ◽  
Lisa Oksri Nelfia ◽  
Ade Okvianti Irlan ◽  
Indrawati Sumeru

Construction is growing rapidly nowadays. Buildings, housing, industry/business centers and highways will require natural aggregates which are natural resources that cannot be renewed. Therefore, we need replacement materials able to replace these natural aggregate. The large amount of plastic waste in fields, based on existing data, causes environmental pollution through it can be reused and useful for building and road construction. Most of communities don’t even know the plastic waste processing technology that allow their use in the construction of house construction such as floors, walls, roofs, and hinges and also road construction with not heavy road loads. The purpose of this activity is to provide the knowledge to the people of RPTRA related to technology for the use of plastic waste for building materials and also road construction in the area in the RPTRA environment considering it is not a public road and hence, with not heavy vehicle. The method used is firstly observation and interview of several houses visited. Then activities about using different types of plastic waste as construction materials. Finally, evaluation of the progress of the project by conducting a survey to people who had met the criteria of being a member of the plastic waste program. The success of this program will be the people’s understanding and a significate growing of any highvalue plastic use as construction material. The benefit of this community service is to increase the knowledge and insight of the people of RPTRA, South Meruya, and West Jakarta City, related to environmentally friendly technologies such as plastic waste processing.


Author(s):  
P. Pratikso ◽  
A. Purwanto ◽  
S. Sudarno

Natural resources such as natural material such as stone, sand, asphalt which has long been used by humans for road construction because of the limited experience any material taken will collide with the preservation of the environment so that the construction work of road infrastructure obstacles and ultimately can lead to the work stalled road infrastructure. To overcome these problems it is necessary to the implementation of the technology development of road infrastructure by using recycled (recycling). The purpose of this study is to determine levels of cement that can be used for the top layer foundation (base course) with recycled materials mixed asphalt cement / Cement Treated Recycling Base (CTRB) on road rehabilitation Semarang - Demak and to determine the uncondifined compressive strength that occurs so that the material can be reused as construction material pavement layer. This study uses an experimental method in the laboratory with a cylindrical specimen diameter of 7 cm height of 14 cm made of asphalt pavement scratching Semarang-Demak roads with cement content variation 0%, 1.5%, 3%, 4.5%, 6% and 7.5% is used for testing the uncondifined compressive strength / (UCS) at the age of 7 days, 21 days, 14 days and 28 days. The results show that the addition of cement content will increase the value of the dry weight insignificantly, but will rise UCS value significantly and utilization of scratching asphalt cement with added material from these laboratory experiments can increase the carrying capacity CTRB construction. Levels of cement that meets the requirements of Unconfined Compressive Strength (UCS) for the construction of Cement Treated Recycling Base (CTRB) is between 6% to 7.5%. According to the results of research it is economically to used cement content at average of 6.75% for road rehabilitation works Semarang - Demak has met the required UCS test.


2021 ◽  
pp. 305-315
Author(s):  
Peerapong Jitsangiam ◽  
Teewara Suwan ◽  
Korakod Nusit ◽  
Prinya Chindaprasirt ◽  
Sararat Kwunjai

Sign in / Sign up

Export Citation Format

Share Document