Issues in closed-loop needle steering

2017 ◽  
Vol 62 ◽  
pp. 55-69 ◽  
Author(s):  
Carlos Rossa ◽  
Mahdi Tavakoli
Keyword(s):  
Author(s):  
Arefeh Boroomand ◽  
Mahdi Tavakoli ◽  
Ron Sloboda ◽  
Nawaid Usmani

This paper is concerned with deriving a dynamic model of a moderately flexible needle inserted into soft tissue, where the model's output is the needle deflection. The main advantages of the proposed dynamic modeling approach are that the presented model structure involves parameters that are all measurable or identifiable by simple experiments and that it considers the same inputs that are currently used in the clinical practice of manual needle insertion. Conventional manual needle insertion suffers from the fact that flexible needles bend during insertion and their trajectories often vary from those planned, resulting in positioning errors. Enhancement of needle insertion accuracy via robot-assisted needle steering has received significant attention in the past decade. A common assumption in previous research has been that the needle behavior during insertion can be adequately described by static models relating the needle's forces and torques to its deflection. For closed-loop control purposes, however, a dynamic model of the flexible needle in soft tissue is desired. In this paper, we propose a Lagrangian-based dynamic model for the coupled needle/tissue system, and analyze the response of the dynamic system. Steerability (controllability) analysis is also performed, which is only possible with a dynamic model. The proposed dynamic model can serve as a cornerstone of future research into designing dynamics-based control strategies for closed-loop needle steering in soft tissue aimed at minimizing position error.


1961 ◽  
Vol 41 (3) ◽  
pp. 245-250 ◽  
Author(s):  
George H. Bornside ◽  
Isidore Cohn
Keyword(s):  

2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


2003 ◽  
Vol 14 (5) ◽  
pp. 471-477
Author(s):  
Dejan M. Novakovic ◽  
Markku J. Juntti ◽  
Miroslav L. Dukic

Sign in / Sign up

Export Citation Format

Share Document