Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks

2010 ◽  
Vol 21 (4) ◽  
pp. 502-510 ◽  
Author(s):  
Eytan Ruppin ◽  
Jason A Papin ◽  
Luis F de Figueiredo ◽  
Stefan Schuster
2021 ◽  
Author(s):  
Mahsa Sadat Razavi Borghei ◽  
Meysam Mobasheri ◽  
Tabassom Sobati

Abstract Propionibacterium is an anaerobic bacterium with a history of use in the production of Swiss cheese and, more recently, several industrial bioproducts. While the use of this strain for the production of organic acids and secondary metabolites has gained growing interest, the industrial application of the strain requires further improvement in the yield and productivity of the target products. Systems modeling and analysis of metabolic networks are widely leveraged to gain holistic insights into the metabolic features of biotechnologically important strains and to devise metabolic engineering and culture optimization strategies for economically viable bioprocess development. In the present study, a high-quality genome-scale metabolic model of P. freudenreichii ssp. freudenreichii strain DSM 20271 was developed based on the strain’s genome annotation and biochemical and physiological data. The model covers the functions of 23% of the strain’s ORFs and accounts for 711 metabolic reactions and 647 unique metabolites. Literature-based reconstruction of the central metabolism and rigorous refinement of annotation data for establishing gene-protein-reaction associations renders the model a curated omic-scale knowledge base of the organism. Validation of the model against experimental data indicates that the reconstruction can capture the key structural and functional features of P. freudenreichii metabolism, including the growth rate, the pattern of flux distribution, the strain’s aerotolerance behavior, and the change in the mode of metabolic activity during the transition from an anaerobic to an aerobic growth regime. The model also includes an accurately curated pathway of cobalamin biosynthesis, which was used to examine the capacity of the strain to produce vitamin B12 precursors. Constraint-based reconstruction and analysis of the P. freudenreichii metabolic network also provided novel insights into the complexity and robustness of P. freudenreichii energy metabolism. The developed reconstruction, hence, may be used as a platform for the development of P. freudenreichii-based microbial cell factories and bioprocesses.


2019 ◽  
Author(s):  
S. N. Mendoza ◽  
B. G Olivier ◽  
D Molenaar ◽  
B Teusink

AbstractSeveral genome-scale metabolic reconstruction software platforms have been developed and are being continuously updated. These tools have been widely applied to reconstruct metabolic models for hundreds of microorganisms ranging from important human pathogens to species of industrial relevance. However, these platforms, as yet, have not been systematically evaluated with respect to software quality, best potential uses and intrinsic capacity to generate high-quality, genome-scale metabolic models. It is therefore unclear for potential users which tool best fits the purpose of their research. In this work, we performed a systematic assessment of the current genome-scale reconstruction software platforms. To meet our goal, we first defined a list of features for assessing software quality related to genome-scale reconstruction, which we expect to be useful for the potential users of these tools. Subsequently, we used the feature list to evaluate the performance of each tool. In order to assess the similarity of the draft reconstructions to high-quality models, we compared each tool’s output networks with that of the high-quality, manually curated, models of Lactobacillus plantarum and Bordetella pertussis, representatives of gram-positive and gram-negative bacteria, respectively. We showed that none of the tools outperforms the others in all the defined features and that model builders should carefully choose a tool (or combinations of tools) depending on the intended use of the metabolic model.Author SummaryMetabolic networks that comprise biochemical reactions at genome-scale have become very useful to study and predict the phenotype of important microorganisms. Several software platforms exist to build these metabolic networks. Based on different approaches and utilizing a variety of databases it is, unfortunately, unclear what are the best scenarios to use each of these tools. Hence, to understand the potential uses of these tools, we created a list of relevant features for metabolic reconstruction and we evaluated the tools in all these categories. Here, we show that none of the tools is better than the other in all the evaluated categories; instead, each tool is more suitable for particular purposes. Therefore, users should carefully select the tool(s) that best fit the purpose of their research. This is the first time these tools are systematically evaluated and this overview can be used as a guide for selecting the correct tool(s) for each case.


FEBS Open Bio ◽  
2021 ◽  
Author(s):  
You‐Tyun Wang ◽  
Min‐Ru Lin ◽  
Wei‐Chen Chen ◽  
Wu‐Hsiung Wu ◽  
Feng‐Sheng Wang

2021 ◽  
Author(s):  
Ecehan Abdik ◽  
Tunahan Cakir

Genome-scale metabolic networks enable systemic investigation of metabolic alterations caused by diseases by providing interpretation of omics data. Although Mus musculus (mouse) is one of the most commonly used model...


2012 ◽  
Vol 13 (1) ◽  
Author(s):  
Abdelhalim Larhlimi ◽  
Laszlo David ◽  
Joachim Selbig ◽  
Alexander Bockmayr

2010 ◽  
Vol 4 (1) ◽  
pp. 114 ◽  
Author(s):  
Karin Radrich ◽  
Yoshimasa Tsuruoka ◽  
Paul Dobson ◽  
Albert Gevorgyan ◽  
Neil Swainston ◽  
...  

2017 ◽  
Vol 9 (10) ◽  
pp. 830-835 ◽  
Author(s):  
Xingxing Jian ◽  
Ningchuan Li ◽  
Qian Chen ◽  
Qiang Hua

Reconstruction and application of genome-scale metabolic models (GEMs) have facilitated metabolic engineering by providing a platform on which systematic computational analysis of metabolic networks can be performed.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0240953
Author(s):  
Christian Schulz ◽  
Eivind Almaas

Approaches for systematizing information of relatedness between organisms is important in biology. Phylogenetic analyses based on sets of highly conserved genes are currently the basis for the Tree of Life. Genome-scale metabolic reconstructions contain high-quality information regarding the metabolic capability of an organism and are typically restricted to metabolically active enzyme-encoding genes. While there are many tools available to generate draft reconstructions, expert-level knowledge is still required to generate and manually curate high-quality genome-scale metabolic models and to fill gaps in their reaction networks. Here, we use the tool AutoKEGGRec to construct 975 genome-scale metabolic draft reconstructions encoded in the KEGG database without further curation. The organisms are selected across all three domains, and their metabolic networks serve as basis for generating phylogenetic trees. We find that using all reactions encoded, these metabolism-based comparisons give rise to a phylogenetic tree with close similarity to the Tree of Life. While this tree is quite robust to reasonable levels of noise in the metabolic reaction content of an organism, we find a significant heterogeneity in how much noise an organism may tolerate before it is incorrectly placed in the tree. Furthermore, by using the protein sequences for particular metabolic functions and pathway sets, such as central carbon-, nitrogen-, and sulfur-metabolism, as basis for the organism comparisons, we generate highly specific phylogenetic trees. We believe the generation of phylogenetic trees based on metabolic reaction content, in particular when focused on specific functions and pathways, could aid the identification of functionally important metabolic enzymes and be of value for genome-scale metabolic modellers and enzyme-engineers.


2020 ◽  
Author(s):  
Tom J. Clement ◽  
Erik B. Baalhuis ◽  
Bas Teusink ◽  
Frank J. Bruggeman ◽  
Robert Planqué ◽  
...  

AbstractThe metabolic capabilities of cells determine their biotechnological potential, fitness in ecosystems, pathogenic threat levels, and function in multicellular organisms. Their comprehensive experimental characterisation is generally not feasible, particularly for unculturable organisms. In principle, the full range of metabolic capabilities can be computed from an organism’s annotated genome using metabolic network reconstruction. However, current computational methods cannot deal with genome-scale metabolic networks. Part of the problem is that these methods aim to enumerate all metabolic pathways, while computation of all (elementally balanced) conversions between nutrients and products would suffice. Indeed, the elementary conversion modes (ECMs, defined by Urbanczik and Wagner) capture the full metabolic capabilities of a network, but the use of ECMs has not been accessible, until now. We extend and explain the theory of ECMs, implement their enumeration in ecmtool, and illustrate their applicability. This work contributes to the elucidation of the full metabolic footprint of any cell.


Sign in / Sign up

Export Citation Format

Share Document