scholarly journals Genome Scale Constraint-Based Metabolic Reconstruction of Propionibacterium Freudenreichii DSM 20271

Author(s):  
Mahsa Sadat Razavi Borghei ◽  
Meysam Mobasheri ◽  
Tabassom Sobati

Abstract Propionibacterium is an anaerobic bacterium with a history of use in the production of Swiss cheese and, more recently, several industrial bioproducts. While the use of this strain for the production of organic acids and secondary metabolites has gained growing interest, the industrial application of the strain requires further improvement in the yield and productivity of the target products. Systems modeling and analysis of metabolic networks are widely leveraged to gain holistic insights into the metabolic features of biotechnologically important strains and to devise metabolic engineering and culture optimization strategies for economically viable bioprocess development. In the present study, a high-quality genome-scale metabolic model of P. freudenreichii ssp. freudenreichii strain DSM 20271 was developed based on the strain’s genome annotation and biochemical and physiological data. The model covers the functions of 23% of the strain’s ORFs and accounts for 711 metabolic reactions and 647 unique metabolites. Literature-based reconstruction of the central metabolism and rigorous refinement of annotation data for establishing gene-protein-reaction associations renders the model a curated omic-scale knowledge base of the organism. Validation of the model against experimental data indicates that the reconstruction can capture the key structural and functional features of P. freudenreichii metabolism, including the growth rate, the pattern of flux distribution, the strain’s aerotolerance behavior, and the change in the mode of metabolic activity during the transition from an anaerobic to an aerobic growth regime. The model also includes an accurately curated pathway of cobalamin biosynthesis, which was used to examine the capacity of the strain to produce vitamin B12 precursors. Constraint-based reconstruction and analysis of the P. freudenreichii metabolic network also provided novel insights into the complexity and robustness of P. freudenreichii energy metabolism. The developed reconstruction, hence, may be used as a platform for the development of P. freudenreichii-based microbial cell factories and bioprocesses.

2018 ◽  
Author(s):  
Marzia Di Filippo ◽  
Raúl A. Ortiz-Merino ◽  
Chiara Damiani ◽  
Gianni Frascotti ◽  
Danilo Porro ◽  
...  

Genome-scale metabolic models are powerful tools to understand and engineer cellular systems facilitating their use as cell factories. This is especially true for microorganisms with known genome sequences from which nearly complete sets of enzymes and metabolic pathways are determined, or can be inferred. Yeasts are highly diverse eukaryotes whose metabolic traits have long been exploited in industry, and although many of their genome sequences are available, few genome-scale metabolic models have so far been produced. For the first time, we reconstructed the genome-scale metabolic model of the hybrid yeast Zygosaccharomyces parabailii, which is a member of the Z. bailii sensu lato clade notorious for stress-tolerance and therefore relevant to industry. The model comprises 3096 reactions, 2091 metabolites, and 2413 genes. Our own laboratory data were then used to establish a biomass synthesis reaction, and constrain the extracellular environment. Through constraint-based modeling, our model reproduces the co-consumption and catabolism of acetate and glucose posing it as a promising platform for understanding and exploiting the metabolic potential of Z. parabailii.


2013 ◽  
Vol 103 ◽  
pp. 100-108 ◽  
Author(s):  
Bevan Kai-Sheng Chung ◽  
Meiyappan Lakshmanan ◽  
Maximilian Klement ◽  
Bijayalaxmi Mohanty ◽  
Dong-Yup Lee

2021 ◽  
Author(s):  
Christopher E. Lawson ◽  
Aniela B. Mundinger ◽  
Hanna Koch ◽  
Tyler B. Jacobson ◽  
Coty A. Weathersby ◽  
...  

AbstractNitrite-oxidizing bacteria belonging to the genus Nitrospira mediate a key step in nitrification and play important roles in the biogeochemical nitrogen cycle and wastewater treatment. While these organisms have recently been shown to exhibit metabolic flexibility beyond their chemolithoautotrophic lifestyle, including the use of simple organic compounds to fuel their energy metabolism, the metabolic networks controlling their autotrophic and mixotrophic growth remain poorly understood. Here, we reconstructed a genome-scale metabolic model for Nitrospira moscoviensis (iNmo686) and used constraint-based analysis to evaluate the metabolic networks controlling autotrophic and formatotrophic growth on nitrite and formate, respectively. Subsequently, proteomic analysis and 13C-tracer experiments with bicarbonate and formate coupled to metabolomic analysis were performed to experimentally validate model predictions. Our findings support that N. moscoviensis uses the reductive tricarboxylic acid cycle for CO2 fixation. We also show that N. moscoviensis can indirectly use formate as a carbon source by oxidizing it first to CO2 followed by reassimilation, rather than direct incorporation via the reductive glycine pathway. Our study offers the first measurements of Nitrospira’s in vivo central carbon metabolism and provides a quantitative tool that can be used for understanding and predicting their metabolic processes.ImportanceNitrospira are globally abundant nitrifying bacteria in soil and aquatic ecosystems and wastewater treatment plants, where they control the oxidation of nitrite to nitrate. Despite their critical contribution to nitrogen cycling across diverse environments, detailed understanding of their metabolic network and prediction of their function under different environmental conditions remains a major challenge. Here, we provide the first constraint-based metabolic model of N. moscoviensis representing the ubiquitous Nitrospira lineage II and subsequently validate this model using proteomics and 13C-tracers combined with intracellular metabolomic analysis. The resulting genome-scale model will serve as a knowledge base of Nitrospira metabolism and lays the foundation for quantitative systems biology studies of these globally important nitrite- oxidizing bacteria.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Thordis Kristjansdottir ◽  
Elleke F. Bosma ◽  
Filipe Branco dos Santos ◽  
Emre Özdemir ◽  
Markus J. Herrgård ◽  
...  

Abstract Background Lactobacillus reuteri is a heterofermentative Lactic Acid Bacterium (LAB) that is commonly used for food fermentations and probiotic purposes. Due to its robust properties, it is also increasingly considered for use as a cell factory. It produces several industrially important compounds such as 1,3-propanediol and reuterin natively, but for cell factory purposes, developing improved strategies for engineering and fermentation optimization is crucial. Genome-scale metabolic models can be highly beneficial in guiding rational metabolic engineering. Reconstructing a reliable and a quantitatively accurate metabolic model requires extensive manual curation and incorporation of experimental data. Results A genome-scale metabolic model of L. reuteri JCM 1112T was reconstructed and the resulting model, Lreuteri_530, was validated and tested with experimental data. Several knowledge gaps in the metabolism were identified and resolved during this process, including presence/absence of glycolytic genes. Flux distribution between the two glycolytic pathways, the phosphoketolase and Embden–Meyerhof–Parnas pathways, varies considerably between LAB species and strains. As these pathways result in different energy yields, it is important to include strain-specific utilization of these pathways in the model. We determined experimentally that the Embden–Meyerhof–Parnas pathway carried at most 7% of the total glycolytic flux. Predicted growth rates from Lreuteri_530 were in good agreement with experimentally determined values. To further validate the prediction accuracy of Lreuteri_530, the predicted effects of glycerol addition and adhE gene knock-out, which results in impaired ethanol production, were compared to in vivo data. Examination of both growth rates and uptake- and secretion rates of the main metabolites in central metabolism demonstrated that the model was able to accurately predict the experimentally observed effects. Lastly, the potential of L. reuteri as a cell factory was investigated, resulting in a number of general metabolic engineering strategies. Conclusion We have constructed a manually curated genome-scale metabolic model of L. reuteri JCM 1112T that has been experimentally parameterized and validated and can accurately predict metabolic behavior of this important platform cell factory.


2020 ◽  
Author(s):  
Vetle Simensen ◽  
André Voigt ◽  
Eivind Almaas

AbstractThe long-chain, ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are essential for humans and animals, including marine fish species. Presently, the primary source of these PUFAs is fish oils. As the global production of fish oils appears to be reaching its limits, alternative sources of high-quality ω-3 PUFAs is paramount to support the growing aquaculture industry. Thraustochytrids are a group of heterotrophic protists able to synthesize and accrue large amounts of essential ω-3 PUFAs, including EPA and DHA. Thus, the thraustochytrids are prime candidates to solve the increasing demand for ω-3 PUFAs using microbial cell factories. However, a systems-level understanding of their metabolic shift from cellular growth into lipid accumulation is, to a large extent, unclear. Here, we reconstructed a high-quality genome-scale metabolic model of the thraustochytrid Aurantiochytrium sp. T66 termed iVS1191. Through iterative rounds of model refinement and extensive manual curation, we significantly enhanced the metabolic scope and coverage of the reconstruction from that of previously published models, making considerable improvements with stoichiometric consistency, metabolic connectivity, and model annotations. We show that iVS1191 is highly consistent with experimental growth data, reproducing in vivo growth phenotypes as well as specific growth rates on minimal carbon media. The availability of iVS1191 provides a solid framework for further developing our understanding of T66’s metabolic properties, as well as exploring metabolic engineering and process-optimization strategies in silico for increased ω-3 PUFA production.


2019 ◽  
Author(s):  
Thordis Kristjansdottir ◽  
Elleke F. Bosma ◽  
Filipe Branco dos Santos ◽  
Emre Özdemir ◽  
Markus J. Herrgård ◽  
...  

AbstractBackgroundLactobacillus reuteri is a heterofermentative Lactic Acid Bacterium (LAB) that is commonly used for food fermentations and probiotic purposes. Due to its robust properties, it is also increasingly considered for use as a cell factory. It produces several industrially important compounds such as 1,3-propanediol and reuterin natively, but for cell factory purposes, developing improved strategies for engineering and fermentation optimization is crucial. Genome-scale metabolic models can be highly beneficial in guiding rational metabolic engineering. Reconstructing a reliable and a quantitatively accurate metabolic model requires extensive manual curation and incorporation of experimental data.ResultsA genome-scale metabolic model of L. reuteri JCM 1112T was reconstructed and the resulting model, Lreuteri_530, was validated and tested with experimental data. Several knowledge gaps in the metabolism were identified and resolved during this process, including presence/absence of glycolytic genes. Flux distribution between the two glycolytic pathways, the phosphoketolase and Embden-Meyerhof-Parnas pathways, varies considerably between LAB species and strains. As these pathways result in different energy yields, it is important to include strain-specific utilization of these pathways in the model. We determined experimentally that the Embden-Meyerhof-Parnas pathway carried at most 7% of the total glycolytic flux. Predicted growth rates from Lreuteri_530 were in good agreement with experimentally determined values. To further validate the prediction accuracy of Lreuteri_530, the predicted effects of glycerol addition and adhE gene knock-out, which results in impaired ethanol production, were compared to in vivo data. Examination of both growth rates and uptake- and secretion rates of the main metabolites in central metabolism demonstrated that the model was able to accurately predict the experimentally observed effects. Lastly, the potential of L. reuteri as a cell factory was investigated, resulting in a number of general metabolic engineering strategies.ConclusionWe have constructed a manually curated genome-scale metabolic model of L. reuteri JCM 1112T that has been experimentally parameterized and validated and can accurately predict metabolic behavior of this important platform cell factory.


2021 ◽  
Author(s):  
Emil Ljungqvist ◽  
Martin Gustavsson

AbstractThermophilic microorganisms show high potential for use as biorefinery cell factories. Their high growth temperatures provide fast conversion rates, lower risk of contaminations, and facilitated purification of volatile products. To date, only a few thermophilic species have been utilized for microbial production purposes, and the development of production strains is impeded by the lack of metabolic engineering tools. In this study, we constructed a genome-scale metabolic model, iGEL601, of Geobacillus sp. LC300, an important part of the metabolic engineering pipeline. The model contains 601 genes, 1240 reactions and 1305 metabolites, and the reaction reversibility is based on thermodynamics at the optimum growth temperature. Using flux sampling, the model shows high similarity to experimentally determined reaction fluxes with both glucose and xylose as sole carbon sources. Furthermore, the model predicts previously unidentified by-products, closing the gap in the carbon balance for both carbon sources. Finally, iGEL601 was used to suggest metabolic engineering strategies to maximise production of five industrially relevant compounds. The suggested strategies have previously been experimentally verified in other microorganisms, and predicted production rates are on par with or higher than those previously achieved experimentally. The results highlight the biotechnological potential of LC300 and the application of iGEL601 for use as a tool in the metabolic engineering workflow.


2017 ◽  
Author(s):  
George C diCenzo ◽  
Alessio Mengoni ◽  
Marco Fondi

ABSTRACTMotivationTn-seq (transposon mutagenesis and sequencing) and constraint-based metabolic modelling represent highly complementary approaches. They can be used to probe the core genetic and metabolic networks underlying a biological process, revealing invaluable information for synthetic biology engineering of microbial cell factories. However, while algorithms exist for integration of –omics data sets with metabolic models, no method has been explicitly developed for integration of Tn-seq data with metabolic reconstructions.ResultsWe report the development of Tn-Core, a Matlab toolbox designed to generate gene-centric, context-specific core reconstructions consistent with experimental Tn-seq data. Extensions of this algorithm allow: i) the generation of context-specific functional models through integration of both Tn-seq and RNA-seq data; ii) to visualize redundancy in core metabolic processes; and iii) to assist in curation ofde novodraft metabolic models. The utility of Tn-Core is demonstrated primarily using aSinorhizobium melilotimodel as a case study.Availability and implementationThe software can be downloaded fromhttps://github.com/diCenzo-GC/Tn-Core. All results presented in this work have been obtained with Tn-Core v. [email protected],[email protected] informationSupplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Eline Postma ◽  
Else-Jasmijn Hassing ◽  
Venda Mangkusaputra ◽  
Jordi Geelhoed ◽  
Pilar de la Torre ◽  
...  

The construction of powerful cell factories requires intensive genetic engineering for the addition of new functionalities and the remodeling of native pathways and processes. The present study demonstrates the feasibility of extensive genome reprogramming using modular, specialized de novo-assembled neochromosomes in yeast. The in vivo assembly of linear and circular neochromosomes, carrying 20 native and 21 heterologous genes, enabled the first de novo production in a microbial cell factory of anthocyanins, plant compounds with a broad range pharmacological properties. Turned into exclusive expression platforms for heterologous and essential metabolic routes, the neochromosomes mimic native chromosomes regarding mitotic and genetic stability, copy number, harmlessness for the host and editability by CRISPR/Cas9. This study paves the way for future microbial cell factories with modular genomes in which core metabolic networks, localized on satellite, specialized neochromosomes can be swapped for alternative configurations and serve as landing pads for the addition of functionalities.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
S Tsouka ◽  
V Hatzimanikatis

ABSTRACT Over the last decades, yeast has become a key model organism for the study of lipid biochemistry. Because the regulation of lipids has been closely linked to various physiopathologies, the study of these biomolecules could lead to new diagnostics and treatments. Before the field can reach this point, however, sufficient tools for integrating and analyzing the ever-growing availability of lipidomics data will need to be developed. To this end, genome-scale models (GEMs) of metabolic networks are useful tools, though their large size and complexity introduces too much uncertainty in the accuracy of predicted outcomes. Ideally, therefore, a model for studying lipids would contain only the pathways required for the proper analysis of these biomolecules, but would not be an ad hoc reduction. We hereby present a metabolic model that focuses on lipid metabolism constructed through the integration of detailed lipid pathways into an already existing GEM of Saccharomyces cerevisiae. Our model was then systematically reduced around the subsystems defined by these pathways to provide a more manageable model size for complex studies. We show that this model is as consistent and inclusive as other yeast GEMs regarding the focus and detail on the lipid metabolism, and can be used as a scaffold for integrating lipidomics data to improve predictions in studies of lipid-related biological functions.


Sign in / Sign up

Export Citation Format

Share Document