3D computer simulation of the influence of microstructure on the cut edge corrosion behaviour of a zinc aluminium alloy galvanized steel

2006 ◽  
Vol 48 (8) ◽  
pp. 2291-2303 ◽  
Author(s):  
S.G.R. Brown ◽  
N.C. Barnard
2021 ◽  
Vol 113 (1-2) ◽  
pp. 59-72
Author(s):  
Yohei Abe ◽  
Ken-ichiro Mori

AbstractTo increase the usage of high-strength steel and aluminium alloy sheets for lightweight automobile body panels, the joinability of sheet combinations including a 780-MPa high-strength steel and an aluminium alloy A5052 sheets by mechanical clinching and self-pierce riveting was investigated for different tool shapes in an experiment. All the sheet combinations except for the two steel sheets by self-pierce riveting, i.e., the two steel sheets, the two aluminium alloy sheets, and the steel-aluminium alloy sheets, were successfully joined by both the joining methods without the gaps among the rivet and the sheets. Then, to show the durability of the joined sheets, the corrosion behaviour and the joint strength of the aged sheets by a salt spray test were measured. The corrosion and the load reduction of the clinched and the riveted two aluminium alloy sheets were little. The corrosion of the clinched two steel sheets without the galvanized layer progressed, and then the load after 1176 h decreased by 85%. In the clinched two galvanized steel sheets, the corrosion progress slowed down by 24%. In the clinched steel and aluminium alloy sheets, the thickness reduction occurred near the minimum thickness of the upper sheet and in the upper surface on the edge of the lower aluminium alloy sheet, whereas the top surface of the upper sheet and the upper surface of the lower sheet were mainly corroded in the riveted joint. The load reduction was caused by the two thickness reductions, i.e., the reduction in the minimum thickness of the upper sheet and the reduction in the flange of the aluminium alloy sheet. Although the load of the clinched steel without the galvanized coating layer and aluminium alloy sheets decreased by about 20%, the use of the galvanized steel sheet brought the decrease by about 11%. It was found that the use of the galvanized steel sheets is effective for the decrease of strength reduction due to corrosion.


2011 ◽  
Vol 53 (10) ◽  
pp. 3215-3221 ◽  
Author(s):  
H. Amar ◽  
V. Vignal ◽  
H. Krawiec ◽  
C. Josse ◽  
P. Peyre ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1821
Author(s):  
Ting He ◽  
Wei Shi ◽  
Song Xiang ◽  
Chaowen Huang ◽  
Ronald G. Ballinger

The influence of AlFeSi and Mg2Si phases on corrosion behaviour of the cast 6061 aluminium alloy was investigated. Scanning Kelvin probe force microscopy (SKPFM), electron probe microanalysis (EPMA), and in situ observations by confocal laser scanning microscopy (CLSM) were used. It was found that Mg2Si phases were anodic relative to the matrix and dissolved preferentially without significantly affecting corrosion propagation. The AlFeSi phases’ influence on 6061 aluminium alloy local corrosion was greater than that of the Mg2Si phases. The corroded region width reached five times that of the AlFeSi phase, and the accelerating effect was terminated as the AlFeSi dissolved.


1993 ◽  
Vol 28 (15) ◽  
pp. 4053-4058 ◽  
Author(s):  
M. Saxena ◽  
A. K. Jha ◽  
G. S. Upadhyaya

2014 ◽  
Vol 66 (6) ◽  
pp. 535-541 ◽  
Author(s):  
R. Arrabal ◽  
B. Mingo ◽  
A. Pardo ◽  
M. Mohedano ◽  
E. Matykina ◽  
...  

2018 ◽  
Vol 8 (9) ◽  
pp. 1659 ◽  
Author(s):  
Youqiong Qin ◽  
Xi He ◽  
Wenxiang Jiang

Bead-on-plate cold metal transfer (CMT) brazing and overlap CMT welding–brazing of 7075 aluminium alloy and galvanized steel at different preheating temperatures were studied. The results indicated that AlSi5 filler wire had good wettability to galvanized steel. The preheating treatment can promote the spreadability of liquid AlSi5. For the overlap CMT welding–brazed joint, the microstructure of the joint was divided into four zones, namely, the interfacial layer, weld metal zone, zinc-rich zone, and heat affected zone (HAZ). The load force of the joints without preheating and 100 °C preheating temperature was 8580 N and 9730 N, respectively. Both of the joints were fractured in the fusion line with a ductile fracture. Further increasing the preheating temperature to 200 °C would decrease the load force of the joint, which fractured in the interfacial layer with a brittle fracture.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2177 ◽  
Author(s):  
Andrey Gnedenkov ◽  
Sergey Sinebryukhov ◽  
Dmitry Mashtalyar ◽  
Igor Vyaliy ◽  
Vladimir Egorkin ◽  
...  

The high electrochemical activity of the aircraft 1579 aluminium alloy with a welded joint and the necessity of the coating formation to protect this material against corrosion as well as to increase the stability of the weld interface in the corrosive medium has been previously established. In this work, two suggested methods of protective coating formation based on plasma electrolytic oxidation (PEO) in tartrate-fluoride electrolyte significantly increased the protective properties of the welded joint area of the 1579 Al alloy. The electrochemical properties of the formed surface layers have been investigated using SVET (scanning vibrating electrode technique) and SIET (scanning ion-selective electrode technique), EIS (electrochemical impedance spectroscopy), OCP (open circuit potential), and PDP (potentiodynamic polarization) in 0.5 M NaCl. The less expressed character of the local electrochemical processes on the welded 1579 Al alloy with the composite coating in comparison with the base PEO-layer has been established. Polymer-containing coatings obtained using superdispersed polytetrafluoroethylene (SPTFE) treatment are characterized by the best possible protective properties and prevent the material from corrosion destruction. Single SPTFE treatment enables one to increase PEO-layer protection by 5.5 times. The results of this study indicate that SVET and SIET are promising to characterize and to compare corrosion behaviour of coated and uncoated samples with a welded joint in chloride-containing media.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. O. Adeosun ◽  
E. I. Akpan ◽  
S. A. Balogun

The study on corrosion behaviour of wrought aluminium alloy in domestic food cooking conditions has been examined using the gravimetric approach. Flat cold rolled and annealed sheets were subjected to solutions of Capsicum annuum, L. esculentum, Allium cepa, and their blend under three conditions, namely, heating and cooling in still air, heating and cooling in refrigerator, and leaving some in open still atmosphere. Results show that corrosion occurred within the test period (288 hours) in the test environments. There was severe degradation within the first 70 hours of test when coupons were heated and cooled while unheated coupon showed low corrosion propensity. Microstructural analysis show the presence of corrosion pits on coupon surface with second phase particles sandwiched in α-aluminium matrix. Immersed coupon in the blend media show higher number of pits on the surface. Rapid corrosion of wrought aluminium alloy in Capsicum annuum, L. esculentum and Allium cepa media is attributed to the presence of corrosion aggressive elements such as allicin, diallyl-disulphide, and allyl-propyl disulphide present in the corrosion media.


Sign in / Sign up

Export Citation Format

Share Document