Revealing internal corrosion of GH4169 with stress coupled solid NaCl deposited in a humid environment of 600 °C

2022 ◽  
Vol 195 ◽  
pp. 110004
Author(s):  
Wenquan Wang ◽  
Yu Cui ◽  
Rui Liu ◽  
Li Liu ◽  
Fuhui Wang
2013 ◽  
Vol 39 (12) ◽  
pp. 2253
Author(s):  
Qing-Jiu YAN ◽  
Shi-Ping HUO ◽  
Fang-Kui ZHANG ◽  
Xing-Duan ZHANG ◽  
Jian ZHANG ◽  
...  

2001 ◽  
Vol 1 (3) ◽  
pp. 91-96 ◽  
Author(s):  
L.J. Hem ◽  
E.A. Vik ◽  
A. Bjørnson-Langen

In 1995 the new Skullerud water treatment plant was put into operation. The new water treatment includes colour removal and corrosion control with an increase of pH, alkalinity and calcium concentration in addition to the old treatment, which included straining and chlorination only. Comparative measurements of internal corrosion were conducted before and after the installation of the new treatment plant. The effect of the new water treatment on the internal corrosion was approximately a 20% reduction in iron corrosion and a 70% reduction in copper corrosion. The heavy metals content in standing water was reduced by approximately 90%. A separate internal corrosion monitoring programme was conducted, studying the effects of other water qualities on the internal corrosion rate. Corrosion coupons were exposed to the different water qualities for nine months. The results showed that the best protection of iron was achieved with water supersaturated with calcium carbonate. Neither a high content of free carbon dioxide or the use of the corrosion inhibitor sodium silicate significantly reduced the iron corrosion rate compared to the present treated water quality. The copper corrosion rate was mainly related to the pH in the water.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
M. K. Singh ◽  
VINOD KUMAR ◽  
SHAMBHU PRASAD

A field experiment was carried out during the kharif of 2014 and 2015 to evaluate the yield potential, economics and thermal utilization in eleven finger millet varieties under the rainfed condition of the sub-humid environment of South Bihar of Eastern India. Results revealed that the significantly higher grain yield (20.41 q ha-1), net returns (Rs 25301) and B: C ratio (1.51) was with the finger millet variety ‘GPU 67’ but was being at par to ‘GPU28’and ‘RAU-8’, and significantly superior over remaining varieties. The highest heat units (1535.1oC day), helio-thermal units (7519.7oC day hours), phenothermal index (19.4 oC days day-1) were recorded with variety ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ and lowest in ‘VL 149’ at 50 % anthesis stage. Similarly, the highest growing degree days (2100 oC day), helio-thermal units (11035.8 oC day hours) were noted with ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ at maturity. The highest heat use efficiency (0.97 kg ha-1 oC day) and helio-thermal use efficiency (0.19 kg ha-1 oC day hour) were in ‘GPU 67’ followed by ‘VL 315’.


Author(s):  
S. Schellert ◽  
B. Gorr ◽  
H.- J. Christ ◽  
C. Pritzel ◽  
S. Laube ◽  
...  

AbstractIn this study, the effect of Al on the high temperature oxidation of Al-containing refractory high entropy alloys (RHEAs) Ta-Mo-Cr-Ti-xAl (x = 5; 10; 15; 20 at%) was examined. Oxidation experiments were performed in air for 24 h at 1200 °C. The oxidation kinetics of the alloy with 5 at% Al is notably affected by the formation of gaseous MoO3 and CrO3, while continuous mass gain was detected for alloys with the higher Al concentrations. The alloys with 15 and 20 at% Al form relatively thin oxide scales and a zone of internal corrosion due to the formation of dense CrTaO4 scales at the interface oxide/substrate. The alloys with 5 and 10 at% Al exhibit, on the contrary, thick and porous oxide scales because of fast growing Ta2O5. The positive influence of Al on the formation of Cr2O3 followed by the growth of CrTaO4 to yield a compact scale is explained by getter and nucleation effects.


2020 ◽  
Vol 305 ◽  
pp. 110327 ◽  
Author(s):  
Tao Yin ◽  
Xuan Meng ◽  
Linpeng Jin ◽  
Chao Yang ◽  
Naiwang Liu ◽  
...  
Keyword(s):  

2018 ◽  
Vol 765 ◽  
pp. 155-159
Author(s):  
Tosapolporn Pornpibunsompop ◽  
Purit Thanakijkasem

High temperature corrosion of 310S austenitic stainless steel in simulated rocket combustion gas at 900 degree Celsius was investigated and discussed in this paper. 310S austenitic stainless steel was chosen because it was used for building some components of a rocket launcher. The corrosive atmosphere was prepared by mixing of hydrochloric acid and distilled water with 5.5 mole per liter then, boiling that solution and feeding into a corrosion testing chamber. The chamber was set up at 900 degree Celsius with duration 210 hrs. After testing, the corroded specimen was microscopically characterized by OM and SEM/EDS techniques. The corrosion layer was classified into three main sublayers: peeling-off scale, external corrosion sublayer, and internal corrosion sublayer. The local chemical information was analyzed by XRD (in case of peeling-off scale) and SEM/EDS (in case of external and internal corrosion sublayers). The peeling off scale mainly comprised Fe2O3and Fe21.3O32ferrous oxides because they needed much oxygen consumption to exist. In case of external and internal sublayers, there were a lot of pore tunnels and corrosion products. Chlorine and/or hydrogen chloride would penetrate through a passive film and, then, metal chlorides was formed on both external and internal corrosion sublayers. Metal chlorides would volatile because of their lower evaporation temperature than the testing temperature. Moreover, they were oxidized by oxygen in wet condition and resulted metal oxides mostly remaining on the external corrosion sublayer.


Sign in / Sign up

Export Citation Format

Share Document