Susceptibility levels of field populations of Frankliniella occidentalis (Thysanoptera: Thripidae) to seven insecticides in China

2022 ◽  
Vol 153 ◽  
pp. 105886
Author(s):  
Kun Zhang ◽  
Jiangjiang Yuan ◽  
Jing Wang ◽  
Dengke Hua ◽  
Xiaobin Zheng ◽  
...  
Euphytica ◽  
2021 ◽  
Vol 217 (3) ◽  
Author(s):  
Joris Santegoets ◽  
Marcella Bovio ◽  
Wendy van’t Westende ◽  
Roeland E. Voorrips ◽  
Ben Vosman

AbstractThe greenhouse whitefly Trialeurodes vaporariorum is a major threat in tomato cultivation. In greenhouse grown tomatoes non-trichome based whitefly resistance may be better suited than glandular trichome based resistance as glandular trichomes may interfere with biocontrol, which is widely used. Analysis of a collection of recombinant inbred lines derived from a cross between Solanum lycopersicum and Solanum galapagense showed resistance to the whitefly T. vaporariorum on plants without glandular trichomes type IV. The resistance affected whitefly adult survival (AS), but not oviposition rate. This indicates that S. galapagense, in addition to trichome based resistance, also carries non-trichome based resistance components. The effectiveness of the non-trichome based resistance appeared to depend on the season in which the plants were grown. The resistance also had a small but significant effect on the whitefly Bemisia tabaci, but not on the thrips Frankliniella occidentalis. A segregating F2 population was created to map the non-trichome based resistance. Two Quantitative trait loci (QTLs) for reduced AS of T. vaporariorum were mapped on chromosomes 12 and 7 (explaining 13.9% and 6.0% of the variance respectively). The QTL on chromosome 12 was validated in F3 lines.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1384
Author(s):  
Dinar S. C. Wahyuni ◽  
Young Hae Choi ◽  
Kirsten A. Leiss ◽  
Peter G. L. Klinkhamer

Understanding the mechanisms involved in host plant resistance opens the way for improved resistance breeding programs by using the traits involved as markers. Pest management is a major problem in cultivation of ornamentals. Gladiolus (Gladiolus hybridus L.) is an economically important ornamental in the Netherlands. Gladiolus is especially sensitive to attack by western flower thrips (Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae)). The objective of this study was, therefore, to investigate morphological and chemical markers for resistance breeding to western flower thrips in Gladiolus varieties. We measured thrips damage of 14 Gladiolus varieties in a whole-plant thrips bioassay and related this to morphological traits with a focus on papillae density. Moreover, we studied chemical host plant resistance to using an eco-metabolomic approach comparing the 1H NMR profiles of thrips resistant and susceptible varieties representing a broad range of papillae densities. Thrips damage varied strongly among varieties: the most susceptible variety showed 130 times more damage than the most resistant one. Varieties with low thrips damage had shorter mesophylls and epidermal cells, as well as a higher density of epicuticular papillae. All three traits related to thrips damage were highly correlated with each other. We observed a number of metabolites related to resistance against thrips: two unidentified triterpenoid saponins and the amino acids alanine and threonine. All these compounds were highly correlated amongst each other as well as to the density of papillae. These correlations suggest that papillae are involved in resistance to thrips by producing and/or storing compounds causing thrips resistance. Although it is not possible to distinguish the individual effects of morphological and chemical traits statistically, our results show that papillae density is an easy marker in Gladiolus-breeding programs targeted at increased resistance to thrips.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 392
Author(s):  
Amalendu Ghosh ◽  
Priti ◽  
Bikash Mandal ◽  
Ralf G. Dietzgen

Thrips are important pests of agricultural, horticultural, and forest crops worldwide. In addition to direct damages caused by feeding, several thrips species can transmit diverse tospoviruses. The present understanding of thrips–tospovirus relationships is largely based on studies of tomato spotted wilt virus (TSWV) and Western flower thrips (Frankliniella occidentalis). Little is known about other predominant tospoviruses and their thrips vectors. In this study, we report the progression of watermelon bud necrosis virus (WBNV) infection in its vector, melon thrips (Thrips palmi). Virus infection was visualized in different life stages of thrips using WBNV-nucleocapsid protein antibodies detected with FITC-conjugated secondary antibodies. The anterior midgut was the first to be infected with WBNV in the first instar larvae. The midgut of T. palmi was connected to the principal salivary glands (PSG) via ligaments and the tubular salivary glands (TSG). The infection progressed to the PSG primarily through the connecting ligaments during early larval instars. The TSG may also have an ancillary role in disseminating WBNV from the midgut to PSG in older instars of T. palmi. Infection of WBNV was also spread to the Malpighian tubules, hindgut, and posterior portion of the foregut during the adult stage. Maximum virus-specific fluorescence in the anterior midgut and PSG indicated the primary sites for WBNV replication. These findings will help to better understand the thrips–tospovirus molecular relationships and identify novel potential targets for their management. To our knowledge, this is the first report of the WBNV dissemination path in its vector, T. palmi.


2008 ◽  
Vol 98 (4) ◽  
pp. 355-359 ◽  
Author(s):  
P. Bielza ◽  
V. Quinto ◽  
C. Grávalos ◽  
E. Fernández ◽  
J. Abellán ◽  
...  

AbstractThe stability of spinosad resistance in western flower thrips (WFT),Frankliniella occidentalis(Pergande), populations with differing initial frequencies of resistance was studied in laboratory conditions. The stability of resistance was assessed in bimonthly residual bioassays in five populations with initial frequencies of 100, 75, 50, 25 and 0% of resistant individuals. There were no consistent changes in susceptibility of the susceptible strain after eight months without insecticide pressure. In the resistant strain, very highly resistant to spinosad (RF50>23,000-fold), resistance was maintained up to eight months without further exposure to spinosad. In the absence of any immigration of susceptible genes into the population, resistance was stable. In the case of the population with different initial frequency of resistant thrips, spinosad resistance declined significantly two months later in the absence of selection pressure. With successive generations, these strains did not change significantly in sensitivity. Spinosad resistance inF. occidentalisdeclined significantly in the absence of selection pressure and the presence of susceptible WFT. These results suggest that spinosad resistance probably is unstable under field conditions, primarily due to the immigration of susceptible WFT. Factors influencing stability or reversion of spinosad resistance are discussed.


2020 ◽  
Vol 12 (18) ◽  
pp. 7816
Author(s):  
Vivek Kumar ◽  
Lucky Mehra ◽  
Cindy L. McKenzie ◽  
Lance S. Osborne

The early establishment of a biocontrol agent in the production system, whether in the greenhouse, nursery, or field, is essential for the success of the biological control program, ensuring growers’ profitability. In an effort to develop a sustainable pest management solution for vegetable growers in Florida, we explored the application of a preemptive biological control strategy, “Predator-In-First” (PIF), in regulating multiple pepper pests, Bemisia tabaci Gennadius, Frankliniella occidentalis Pergande, and Polyphagotarsonemus latus Banks under greenhouse and field conditions during different growing seasons. In these studies, two bell pepper cultivars (7039 and 7141) and the phytoseiid mite Amblyseius swirskii Athias–Henriot were used as a model system. Pepper seedlings (~8 week) of each cultivar were infested with varying rates of A. swirskii (20 or 40 mites/plant or one sachet/10 plant) and allowed to settle on plant hosts for a week before planting in pots or field beds. Results showed a comparative consistent performance of the treatment with the high rate of phytoseiids (40 mites/plant) in regulating B. tabaci and F. occidentalis populations in greenhouse studies, and B. tabaci and P. latus pests under field conditions. During two fall field seasons, higher marketable yields of 12.8% and 20.1% in cultivar 7039, and 24.3% and 39.5% in cultivar 7141 were observed in the treatment with the high rate of phytoseiids compared to the untreated control, indicating yield benefits of the approach. The outcome of the study is encouraging and demonstrates that PIF can be an important tool for organic vegetable growers and a potential alternative to chemical-based conventional pest management strategies. The advantages and limitations of the PIF approach in Florida pepper production are discussed.


Sign in / Sign up

Export Citation Format

Share Document