scholarly journals Forecasting the heating and cooling load of residential buildings by using a learning algorithm “gradient descent”, Morocco

2018 ◽  
Vol 12 ◽  
pp. 85-93 ◽  
Author(s):  
Alaoui Sosse Jihad ◽  
Mohamed Tahiri
2020 ◽  
Vol 10 (11) ◽  
pp. 3829 ◽  
Author(s):  
Arash Moradzadeh ◽  
Amin Mansour-Saatloo ◽  
Behnam Mohammadi-Ivatloo ◽  
Amjad Anvari-Moghaddam

Nowadays, since energy management of buildings contributes to the operation cost, many efforts are made to optimize the energy consumption of buildings. In addition, the most consumed energy in the buildings is assigned to the indoor heating and cooling comforts. In this regard, this paper proposes a heating and cooling load forecasting methodology, which by taking this methodology into the account energy consumption of the buildings can be optimized. Multilayer perceptron (MLP) and support vector regression (SVR) for the heating and cooling load forecasting of residential buildings are employed. MLP and SVR are the applications of artificial neural networks and machine learning, respectively. These methods commonly are used for modeling and regression and produce a linear mapping between input and output variables. Proposed methods are taught using training data pertaining to the characteristics of each sample in the dataset. To apply the proposed methods, a simulated dataset will be used, in which the technical parameters of the building are used as input variables and heating and cooling loads are selected as output variables for each network. Finally, the simulation and numerical results illustrates the effectiveness of the proposed methodologies.


2018 ◽  
Vol 38 (2) ◽  
pp. 741-749
Author(s):  
Sajad Abasnezhad ◽  
Nima Soltani ◽  
Elin Markarian ◽  
Hamed Aghabalayi Fakhim ◽  
Hamed Khezerloo

2014 ◽  
Vol 525 ◽  
pp. 408-411
Author(s):  
Min Seon Jang ◽  
Gyeong Seok Choi ◽  
Jae Sik Kang ◽  
Yumin Kim

Window film is generally attached the glazing in buildings to improve the thermal performance of the window system by addressing a range of problems such as indoor temperature rise, indoor temperature imbalance, degraded heating and cooling load due to excessive influx of solar radiation. To evaluate the performance of window films, window films are attached to 3mm or 6mm clear glass. However, window films are generally used on existing window systems for reducing the annual energy consumption. Therefore it is necessary to evaluate the performance of window films depending on the performance of glazing such as clear double glazing or low-e double glazing. Thus the purpose of this study is to analyze the performance of window systems when window film is attached. As a result, in the case of applying window films for reducing the SHGC of buildings, it is necessary to select window films suitable for the configuration and performance of the glazing to be installed, considering the SHGC of the entire glazing system.


KIEAE Journal ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 29-36
Author(s):  
Nam-Young Jeong ◽  
Ji-Young Lee ◽  
Young Tae Chae

2016 ◽  
Vol 819 ◽  
pp. 541-545 ◽  
Author(s):  
Sholahudin ◽  
Azimil Gani Alam ◽  
Chang In Baek ◽  
Hwataik Han

Energy consumption of buildings is increasing steadily and occupying approximately 30-40% of total energy use. It is important to predict heating and cooling loads of a building in the initial stage of design to find out optimal solutions among various design options, as well as in the operating stage after the building has been completed for energy efficient operation. In this paper, an artificial neural network model has been developed to predict heating and cooling loads of a building based on simulation data for building energy performance. The input variables include relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution of a building, and the output variables include heating load (HL) and cooling load (CL) of the building. The simulation data used for training are the data published in the literature for various 768 residential buildings. ANNs have a merit in estimating output values for given input values satisfactorily, but it has a limitation in acquiring the effects of input variables individually. In order to analyze the effects of the variables, we used a method for design of experiment and conducted ANOVA analysis. The sensitivities of individual variables have been investigated and the most energy efficient solution has been estimated under given conditions. Discussions are included in the paper regarding the variables affecting heating load and cooling load significantly and the effects on heating and cooling loads of residential buildings.


Sign in / Sign up

Export Citation Format

Share Document