scholarly journals Metal/mold thermal conductance affecting ultrafine scale microstructures in aluminum eutectic alloys

Author(s):  
Rafael Kakitani ◽  
Ricardo Oliveira ◽  
Rodrigo V. Reyes ◽  
Adilson V. Rodrigues ◽  
Felipe Bertelli ◽  
...  
Author(s):  
E. F. Koch ◽  
E. L. Hall ◽  
S. W. Yang

The plane-front solidified eutectic alloys consisting of aligned tantalum monocarbide fibers in a nickel alloy matrix are currently under consideration for future aircraft and gas turbine blades. The MC fibers provide exceptional strength at high temperatures. In these alloys, the Ni matrix is strengthened by the precipitation of the coherent γ' phase (ordered L12 structure, nominally Ni3Al). The mechanical strength of these materials can be sensitively affected by overall alloy composition, and these strength variations can be due to several factors, including changes in solid solution strength of the γ matrix, changes in they γ' size or morphology, changes in the γ-γ' lattice mismatch or interfacial energy, or changes in the MC morphology, volume fraction, thermal stability, and stoichiometry. In order to differentiate between these various mechanisms, it is necessary to determine the partitioning of elemental additions between the γ,γ', and MC phases. This paper describes the results of such a study using energy dispersive X-ray spectroscopy in the analytical electron microscope.


Equipment ◽  
2006 ◽  
Author(s):  
B. A. Cola ◽  
J. Xu ◽  
C. Cheng ◽  
Xianfan Xu ◽  
T. Fisher

2019 ◽  
Vol 16 ◽  
Author(s):  
Mohammad Reza Niazian ◽  
Laleh Farhang Matin ◽  
Mojtaba Yaghobi ◽  
Amir Ali Masoudi

Background: Recently, molecular electronics have attracted the attention of many researchers, both theoretically and applied electronics.Nanostructures have significant thermal properties, which is why they are considered as good options for designing a new generation of integrated electronic devices. Objective: In this paper, the focus is on the thermoelectric properties of the molecular junction points with the electrodes. Also, the influence of the number of atom contacts was investigated on the thermoelectric properties of molecule located between two electrodes metallic.Therefore, the thermoelectric characteristics of the B12 N12 molecule are investigated. Methods: For this purpose, the Green’s function theory as well as mapping technique approach with the wide-band approximation and also the inelastic behaviour is considered for the electron-phonon interactions. Results & Conclusion: Results & Conclusion:It is observed that the largest values of the total part of conductance as well as its elastic (G(e,n)max) depends on the number of atom contacts and are arranged as: G(e,1)max>G(e,4)max>G(e,6)max. Furthermore, the largest values of the electronic thermal conductance, i.e. Kpmax is seen to be in the order of K(p,4)max < K(p,1)max < K(p,6)max that the number of main peaks increases in four-atom contacts at (E<Ef). Furthermore, it is represented that the thermal conductance shows an oscillatory behavior which is significantly affected by the number of atom contacts.


2021 ◽  
Vol 194 ◽  
pp. 113645
Author(s):  
Evan B. Baker ◽  
Sangho Jeon ◽  
Olga Shuleshova ◽  
Ivan Kaban ◽  
Yeqing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document