scholarly journals Heat transport investigation of magneto-hydrodynamics (SWCNT-MWCNT) hybrid nanofluid under the thermal radiation regime

Author(s):  
Azad Hussain ◽  
Ali Hassan ◽  
Qasem Al Mdallal ◽  
Hijaz Ahmad ◽  
Aysha Rehman ◽  
...  
2021 ◽  
Author(s):  
Syed M. Hussain

Abstract In this research study, numerical and statistical explorations are accomplished to capture the flow features of the dynamics of ethylene glycol-based hybrid nanofluid flow over an exponentially stretchable sheet with velocity and thermal slip conditions. Physical insight of viscous dissipation, heat absorption and thermal radiation on the flow-field is scrutinized by dissolving the nanoparticles of Molybdenum disulphide (MoS2) and graphene into ethylene glycol. The governing mathematical model is transformed into the system of similarity equations by utilizing the apt similarity variables. The numerical solution of resulting similarity equations with associated conditions are obtained employing three-stages Lobatto-IIIa-bvp4c-solver based on a finite difference scheme in MATLAB. The effects of emerging flow parameters on the flow-field are enumerated through various graphical and tabulated results. Additionally, to comprehend the connection between heat transport rate and emerging flow parameters, a quadratic regression approximation analysis on the numerical entities of local Nusselt numbers and skin friction coefficients is accomplished. The findings disclose that the suction and thermal radiation have an adverse influence on the skin friction coefficients and heat transport rate. Further, a slight augmentation in the thermal slip factor causes a considerable variation in the heat transport rate in comparison to the radiation effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anwar Saeed ◽  
Muhammad Jawad ◽  
Wajdi Alghamdi ◽  
Saleem Nasir ◽  
Taza Gul ◽  
...  

AbstractThis work investigates numerically the solution of Darcy–Forchheimer flow for hybrid nanofluid by employing the slip conditions. Basically, the fluid flow is produced by a swirling disk and is exposed to thermal stratification along with non-linear thermal radiation for controlling the heat transfer of the flow system. In this investigation, the nanoparticles of titanium dioxide and aluminum oxide have been suspended in water as base fluid. Moreover, the Darcy–Forchheimer expression is used to characterize the porous spaces with variable porosity and permeability. The resulting expressions of motion, energy and mass transfer in dimensionless form have been solved by HAM (Homotopy analysis method). In addition, the influence of different emerging factors upon flow system has been disputed both theoretically in graphical form and numerically in the tabular form. During this effort, it has been recognized that velocities profiles augment with growing values of mixed convection parameter while thermal characteristics enhance with augmenting values of radiation parameters. According to the findings, heat is transmitted more quickly in hybrid nanofluid than in traditional nanofluid. Furthermore, it is estimated that the velocities of fluid $$f^{\prime}\left( \xi \right),g\left( \xi \right)$$ f ′ ξ , g ξ are decayed for high values of $$\phi_{1} ,\phi_{2} ,\,Fr$$ ϕ 1 , ϕ 2 , F r and $$k_{1}$$ k 1 factors.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 716 ◽  
Author(s):  
Christoph Sinn ◽  
Felix Kranz ◽  
Jonas Wentrup ◽  
Jorg Thöming ◽  
Gregor D. Wehinger ◽  
...  

The heat transport management in catalytic reactors is crucial for the overall reactor performance. For small-scale dynamically-operated reactors, open-cell foams have shown advantageous heat transport characteristics over conventional pellet catalyst carriers. To design efficient and safe foam reactors as well as to deploy reliable engineering models, a thorough understanding of the three heat transport mechanisms, i.e., conduction, convection, and thermal radiation, is needed. Whereas conduction and convection have been studied extensively, the contribution of thermal radiation to the overall heat transport in open-cell foam reactors requires further investigation. In this study, we simulated a conjugate heat transfer case of a µCT based foam reactor using OpenFOAM and verified the model against a commercial computational fluid dynamics (CFD) code (STAR-CCM+). We further explicitly quantified the deviation made when radiation is not considered. We studied the effect of the solid thermal conductivity, the superficial velocity and surface emissivities in ranges that are relevant for heterogeneous catalysis applications (solid thermal conductivities 1–200 W m−1 K−1; superficial velocities 0.1–0.5 m s−1; surface emissivities 0.1–1). Moreover, the temperature levels correspond to a range of exo- and endothermal reactions, such as CO2 methanation, dry reforming of methane, and methane steam reforming. We found a significant influence of radiation on heat flows (deviations up to 24%) and temperature increases (deviations up to 400 K) for elevated temperature levels, low superficial velocities, low solid thermal conductivities and high surface emissivities.


2019 ◽  
Vol 16 (4) ◽  
pp. 765-790 ◽  
Author(s):  
Nilankush Acharya ◽  
Suprakash Maity ◽  
Prabir Kumar Kundu

Purpose Hybrid nanofluids are of significant engrossment for their considerable heat transport rate. The steady flow of an incompressible viscous electrically conducted hybrid nanofluid is considered over a rotating disk under a magnetic field. Titanium oxide (TiO2) and ferrous (CoFe2O4) nanoparticles are used with their physical properties and water is considered as host liquid. The purpose of this paper is to analyze how hydrothermal integrity varies for hybrid nanosuspension over a spinning disk in the presence of magnetic orientation. Design/methodology/approach Governing equations with boundary conditions are transformed by similarity transformations and then solved numerically with RK-4 method. A comparison of linear and nonlinear thermal radiation for the above-mentioned parameters is taken and the efficiency of nonlinear radiation is established, the same over nanofluid and hybrid nanofluid is also discussed. Heat lines are observed and discussed for various parameters like magnetic field, concentration, suction and injection parameter, radiation effect and Prandtl number. Findings Suction and increasing nanoparticle concentration foster the radial and cross-radial velocities, whereas magnetization and injection confirm the reverse trend. The rate of increment of radial friction is quite higher for the usual nanosuspension. The calculated data demonstrate that the rate for hybrid nanofluid is 8.97 percent, whereas for nanofluid it is 15.06 percent. Double-particle suspension amplifies the thermal efficiency than that of a single particle. Magnetic and radiation parameters aid the heat transfer, but nanoparticle concentration and suction explore the opposite syndrome. The magnetic parameter increases the heat transport at 36.58 and 42.71 percent for nonlinear radiation and hybrid nanosuspension, respectively. Originality/value Nonlinear radiation gives a higher heat transport rate and for the radiation parameter it is almost double. This result is very significant for comparison between linear and nonlinear radiation. Heat lines may be observed by taking different nanoparticle materials to get some diverse result. Hydrothermal study of such hybrid liquid is noteworthy because outcomes of this study will aid nanoscience and nanotechnology in an efficient way.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 962 ◽  
Author(s):  
Naveed Ahmed ◽  
Fitnat Saba ◽  
Umar Khan ◽  
Syed Tauseef Mohyud-Din ◽  
El-Sayed M. Sherif ◽  
...  

The boundary layer flow of sodium alginate ( NaAlg ) based ( Cu − CuO ) hybrid nanofluid, over a curved expanding surface, has been investigated. Heat and mass transport phenomena have also been analyzed. Moreover, the impacts of chemical reaction, magnetic field and nonlinear thermal radiation are also a part of this study. This arrangement has great practical relevance, especially in the polymer and chemical industries. We have extended the Bruggeman model to make it capable of capturing the thermal conductivity of ( Cu − CuO ) / NaAlg hybrid nanofluid. We have employed some suitable transformations to obtain the governing system of nonlinear ODEs. Runge − Kutta − Fehlberg algorithm, accompanied by a shooting technique, has been employed to solve the governing system numerically. The changes in the flow and heat transfer distribution, due to various parameters, have been captured and portrayed in the form of graphs. It has been found that the addition of the nanometer-sized materials, significantly boosts the thermal and heat transport properties of the host fluid, and these phenomena seem to be more prominent, in the case of ( Cu − CuO ) / NaAlg hybrid nanofluid.


Sign in / Sign up

Export Citation Format

Share Document