scholarly journals Interplay between Cell Wall and Auxin Mediates the Control of Differential Cell Elongation during Apical Hook Development

2020 ◽  
Vol 30 (9) ◽  
pp. 1733-1739.e3 ◽  
Author(s):  
Bibek Aryal ◽  
Kristoffer Jonsson ◽  
Anirban Baral ◽  
Gloria Sancho-Andres ◽  
Anne-Lise Routier- Kierzkowska ◽  
...  
2021 ◽  
Author(s):  
Jia Deng ◽  
Xiangfeng Wang ◽  
Ziqiang Liu ◽  
Tonglin Mao

AbstractThe unique apical hook in dicotyledonous plants protects the shoot apical meristem and cotyledons when seedlings emerge through the soil. Its formation involves differential cell growth under the coordinated control of plant hormones, especially ethylene and auxin. Microtubules are essential players in plant cell growth that are regulated by multiple microtubule-associated proteins (MAPs). However, the role and underlying mechanisms of MAP-microtubule modules in differential cell growth are poorly understood. In this study, we found that the previously uncharacterized Arabidopsis MAP WAVE-DAMPENED2-LIKE4 (WDL4) protein plays a positive role in apical hook opening. WDL4 exhibits a temporal expression pattern during hook development in dark-grown seedlings that is directly regulated by ethylene signaling. WDL4 mutants showed a delayed hook opening phenotype while overexpression of WDL4 resulted in enhanced hook opening. In particular, wdl4-1 mutants exhibited stronger auxin accumulation in the concave side of the apical hook. Furthermore, the regulation of the auxin maxima and trafficking of the auxin efflux carriers PIN-FORMED1 (PIN1) and PIN7 in the hook region is critical for WDL4-mediated hook opening. Together, our study demonstrates that WDL4 positively regulates apical hook opening by modulating auxin distribution, thus unraveling a mechanism for MAP-mediated differential plant cell growth.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guiming Deng ◽  
Fangcheng Bi ◽  
Jing Liu ◽  
Weidi He ◽  
Chunyu Li ◽  
...  

AbstractBackgroundBanana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musaspp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach.ResultsA total of 127 differentially expressed genes and 48 differentially accumulated metabolites were detected between the mutant and its wild type. Metabolites belonging to amino acid and its derivatives, flavonoids, lignans, coumarins, organic acids, and phenolic acids were up-regulated in the mutant. The transcriptome analysis showed the differential regulation of genes related to the gibberellin pathway, auxin transport, cell elongation, and cell wall modification. Based on the regulation of gibberellin and associated pathway-related genes, we discussed the involvement of gibberellins in pseudostem elongation in the mutant banana. Genes and metabolites associated with cell wall were explored and their involvement in cell extension is discussed.ConclusionsThe results suggest that gibberellins and associated pathways are possibly developing the observed semi-dwarf pseudostem phenotype together with cell elongation and cell wall modification. The findings increase the understanding of the mechanisms underlying banana stem height and provide new clues for further dissection of specific gene functions.


2008 ◽  
Vol 28 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Ignacio Martín ◽  
Teresa Jiménez ◽  
Josefina Hernández-Nistal ◽  
Emilia Labrador ◽  
Berta Dopico

1994 ◽  
Vol 45 (Special_Issue) ◽  
pp. 1683-1691 ◽  
Author(s):  
Maureen C. McCann ◽  
Keith Roberts

2019 ◽  
Vol 61 (3) ◽  
pp. 546-553
Author(s):  
Kiyoshi Yamazaki ◽  
Yoshihiro Ohmori ◽  
Toru Fujiwara

Abstract Plants take up water and nutrients through roots, and uptake efficiency depends on root behavior. Roots recognize the moisture gradient in the soil and grow toward the direction of high moisture. This phenomenon is called hydrotropism, and it contributes to efficient water uptake. As nutrients in soil are also unevenly distributed, it is beneficial for plants to grow their roots in the direction of increasing nutrient concentrations, but such a phenomenon has not been demonstrated. Here, we describe the directional growth of roots in response to a nutrient gradient. Using our assay system, the gradient of a nitrogen nutrient, NH4+, was sufficient to stimulate positive tropic responses of rice lateral roots. This phenomenon is a tropism of plant roots to nutrients; hence, we propose the name ‘nutritropism’. As well as other tropisms, differential cell elongation was observed before the elongation zone during nutritropism, but the pattern promoting cell elongation preferentially on the non-stimulated side was opposite to those in root hydrotropism and gravitropism. Our evaluation of the NH4+ gradient suggested that the root tips responded to a sub-micromolar difference in NH4+ concentration on both sides of the root. Hydrotropism, gravitropism and phototropism were described in plants as the ‘power of movement’ by Charles and Francis Darwin in 1880, and these three tropisms have attracted the attention of plant scientists for more than 130 years. Our discovery of nutritropism represents the fourth ‘power of movement’ in plants and provides a novel root behavioral property used by plants to acquire nutrients efficiently.


2020 ◽  
Vol 71 (10) ◽  
pp. 2982-2994 ◽  
Author(s):  
Xiaoran Xin ◽  
Lei Lei ◽  
Yunzhen Zheng ◽  
Tian Zhang ◽  
Sai Venkatesh Pingali ◽  
...  

Abstract Auxin-induced cell elongation relies in part on the acidification of the cell wall, a process known as acid growth that presumably triggers expansin-mediated wall loosening via altered interactions between cellulose microfibrils. Cellulose microfibrils are a major determinant for anisotropic growth and they provide the scaffold for cell wall assembly. Little is known about how acid growth depends on cell wall architecture. To explore the relationship between acid growth-mediated cell elongation and plant cell wall architecture, two mutants (jia1-1 and csi1-3) that are defective in cellulose biosynthesis and cellulose microfibril organization were analyzed. The study revealed that cell elongation is dependent on CSI1-mediated cell wall architecture but not on the overall crystalline cellulose content. We observed a correlation between loss of crossed-polylamellate walls and loss of auxin- and fusicoccin-induced cell growth in csi1-3. Furthermore, induced loss of crossed-polylamellate walls via disruption of cortical microtubules mimics the effect of csi1 in acid growth. We hypothesize that CSI1- and microtubule-dependent crossed-polylamellate walls are required for acid growth in Arabidopsis hypocotyls.


Sign in / Sign up

Export Citation Format

Share Document