The Location of the Chickpea Cell Wall ßV-Galactosidase Suggests Involvement in the Transition between Cell Proliferation and Cell Elongation

2008 ◽  
Vol 28 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Ignacio Martín ◽  
Teresa Jiménez ◽  
Josefina Hernández-Nistal ◽  
Emilia Labrador ◽  
Berta Dopico
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guiming Deng ◽  
Fangcheng Bi ◽  
Jing Liu ◽  
Weidi He ◽  
Chunyu Li ◽  
...  

AbstractBackgroundBanana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musaspp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach.ResultsA total of 127 differentially expressed genes and 48 differentially accumulated metabolites were detected between the mutant and its wild type. Metabolites belonging to amino acid and its derivatives, flavonoids, lignans, coumarins, organic acids, and phenolic acids were up-regulated in the mutant. The transcriptome analysis showed the differential regulation of genes related to the gibberellin pathway, auxin transport, cell elongation, and cell wall modification. Based on the regulation of gibberellin and associated pathway-related genes, we discussed the involvement of gibberellins in pseudostem elongation in the mutant banana. Genes and metabolites associated with cell wall were explored and their involvement in cell extension is discussed.ConclusionsThe results suggest that gibberellins and associated pathways are possibly developing the observed semi-dwarf pseudostem phenotype together with cell elongation and cell wall modification. The findings increase the understanding of the mechanisms underlying banana stem height and provide new clues for further dissection of specific gene functions.


1994 ◽  
Vol 45 (Special_Issue) ◽  
pp. 1683-1691 ◽  
Author(s):  
Maureen C. McCann ◽  
Keith Roberts

2020 ◽  
Vol 71 (10) ◽  
pp. 2982-2994 ◽  
Author(s):  
Xiaoran Xin ◽  
Lei Lei ◽  
Yunzhen Zheng ◽  
Tian Zhang ◽  
Sai Venkatesh Pingali ◽  
...  

Abstract Auxin-induced cell elongation relies in part on the acidification of the cell wall, a process known as acid growth that presumably triggers expansin-mediated wall loosening via altered interactions between cellulose microfibrils. Cellulose microfibrils are a major determinant for anisotropic growth and they provide the scaffold for cell wall assembly. Little is known about how acid growth depends on cell wall architecture. To explore the relationship between acid growth-mediated cell elongation and plant cell wall architecture, two mutants (jia1-1 and csi1-3) that are defective in cellulose biosynthesis and cellulose microfibril organization were analyzed. The study revealed that cell elongation is dependent on CSI1-mediated cell wall architecture but not on the overall crystalline cellulose content. We observed a correlation between loss of crossed-polylamellate walls and loss of auxin- and fusicoccin-induced cell growth in csi1-3. Furthermore, induced loss of crossed-polylamellate walls via disruption of cortical microtubules mimics the effect of csi1 in acid growth. We hypothesize that CSI1- and microtubule-dependent crossed-polylamellate walls are required for acid growth in Arabidopsis hypocotyls.


2011 ◽  
Vol 52 (5) ◽  
pp. 894-908 ◽  
Author(s):  
Hugues Renault ◽  
Abdelhak El Amrani ◽  
Ravishankar Palanivelu ◽  
Emily P. Updegraff ◽  
Agnès Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document