scholarly journals An accelerated universe with negative equation of state parameter in inhomogeneous cosmology with k-essence scalar field

2021 ◽  
Vol 32 ◽  
pp. 100800
Author(s):  
Somnath Mukherjee ◽  
Debashis Gangopadhyay
2018 ◽  
Vol 27 (04) ◽  
pp. 1850041 ◽  
Author(s):  
Nasim Saba ◽  
Mehrdad Farhoudi

By studying the chameleon model during inflation, we investigate whether it can be a successful inflationary model, wherein we employ the common typical potential usually used in the literature. Thus, in the context of the slow-roll approximations, we obtain the e-folding number for the model to verify the ability of resolving the problems of standard big bang cosmology. Meanwhile, we apply the constraints on the form of the chosen potential and also on the equation of state parameter coupled to the scalar field. However, the results of the present analysis show that there is not much chance of having the chameleonic inflation. Hence, we suggest that if through some mechanism the chameleon model can be reduced to the standard inflationary model, then it may cover the whole era of the universe from the inflation up to the late time.


2005 ◽  
Vol 14 (02) ◽  
pp. 355-362 ◽  
Author(s):  
H. Q. LU

Recent many physicists suggest that the dark energy in the universe might result from the Born–Infeld (B–I) type scalar field of string theory. The universe of B–I type scalar field with potential can undergo a phase of accelerating expansion. The corresponding equation of state parameter lies in the range of -1<ω<-⅓. The equation of state parameter of B–I type scalar field without potential lies in the range of 0≤ω≤1. We find that weak energy condition and strong energy condition are violated for phantom B–I type scalar field. The equation of state parameter lies in the range of ω<-1.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Julien Grain ◽  
Vincent Vennin

AbstractContracting cosmologies are known to be flawed with a shear instability, where the contribution from the anisotropic stress to the overall energy density grows as $$a^{-6}$$ a - 6 , with a the scale factor. Classically, whether or not this contribution becomes important before the bounce depends on its initial value, which can always be sufficiently fine tuned to make it irrelevant. However, vacuum quantum fluctuations inevitably provide a non-vanishing source of anisotropic stress. In this work, we compute the minimum amount of shear that is obtained if one assumes that it vanishes initially, but lets quantum fluctuations build it up. In practice, we consider a massless test scalar field, and describe its quantum fluctuations by means of the stochastic “inflation” (though here applied to a contracting phase) formalism. We find that, if the equation-of-state parameter of the contraction satisfies $$w>-1/9$$ w > - 1 / 9 , regardless of when the contracting phase is initiated, the time at which the shear becomes sizeable is always when the Hubble scale approaches the Planck mass (which is also where the bounce is expected to take place). However, if $$w<-1/9$$ w < - 1 / 9 , the shear backreaction becomes important much earlier, at a point that depends on the overall amount of contraction.


2007 ◽  
Vol 16 (07) ◽  
pp. 1109-1117 ◽  
Author(s):  
Z. G. HUANG ◽  
H. Q. LU ◽  
W. FANG

In this paper, we regard the dilaton in Weyl-scaled induced gravitational theory as a coupled quintessence. Based on this consideration, we investigate the dilaton coupled quintessence (DCQ) model in the ω - ω′ plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to N (the logarithm of the scale factor a). We find the scalar field equation of motion in the ω - ω′ plane, and show mathematically the properties of attractor solutions which correspond to ωσ ~ -1, ωσ = 1. Finally, we find that our model is a tracking one which belongs to "freezing" type models classified in the ω - ω′ plane.


2016 ◽  
Vol 71 (10) ◽  
pp. 949-960
Author(s):  
Surajit Chattopadhyay ◽  
Antonio Pasqua ◽  
Irina Radinschi

AbstractThe present paper reports a study on accreting tachyon, Dirac-Born-Infeld essence and h-essence scalar field models of dark energy onto Morris-Thorne wormhole. Using three different parameterisation schemes and taking $H\, = \,{H_0}\, + \,{{{H_1}} \over t}$, we have derived the mass of the wormhole for all of the three parameterisation schemes that are able to get hold of both quintessence and phantom behaviour. With suitable choice of parameters, we observed that accreting scalar field dark energy models are increasing the mass of the wormhole in the phantom phase and the mass is decreasing in the quintessence phase. Finally, we have considered accretion with power law form of scale factor and without any parameterisation scheme for the equation of state parameter and observed the fact that phantom-type dark energy supports the existence of wormholes.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
M. Sharif ◽  
Aisha Siddiqa

This paper is devoted to study the cosmological behavior of homogeneous and isotropic universe model in the context of f(R,Tφ) gravity, where φ is the scalar field. For this purpose, we follow the first-order formalism defined by H=W(φ). We evaluate Hubble parameter, effective equation of state parameter (ωeff), deceleration parameter, and potential of scalar field for three different values of W(φ). We obtain phantom era in some cases for the early times. It is found that exponential expression of W(φ) yields ωeff independent of time for flat universe and independent of model parameter otherwise. It is concluded that our model corresponds to ΛCDM for both initial and late times.


2015 ◽  
Vol 30 (01) ◽  
pp. 1550008 ◽  
Author(s):  
J. Sadeghi ◽  
H. Farahani

In this paper, we consider Bianchi type-V spacetime and study a cosmological model of dark energy based on tachyon scalar field. We assumed three different kinds of matter without possibility of interaction with scalar dark energy. Assuming power law Hubble parameter in terms of scale factor we obtain evolution of scalar field, scalar potential and equation of state parameter.


2006 ◽  
Vol 15 (11) ◽  
pp. 1947-1961 ◽  
Author(s):  
WEI FANG ◽  
H. Q. LU ◽  
B. LI ◽  
K. F. ZHANG

We study the Non-Linear Born–Infeld (NLBI) scalar field model and quintessence model with two different potentials (V(ϕ) = -sϕ and [Formula: see text]). We investigate the differences between these two models. We explore the equation of state parameter w and the evolution of scale factor a(t) in both the NLBI scalar field and quintessence model. The present age of universe and the transition redshift are also obtained. We use the Gold dataset of 157 SN-Ia to constrain the parameters of the two models. All the results show that the NLBI model is slightly superior to the quintessence model.


2020 ◽  
Vol 17 (09) ◽  
pp. 2050139
Author(s):  
Abdulla Al Mamon

In this paper, we have investigated some cosmological consequences of a quintessence dark energy model. In particular, we have obtained the forms of the equation of state parameter, the deceleration parameter and the field potential by considering a simple relation between the scale factor and the time derivative of the scalar field, instead of assuming any functional form for the scalar field potential or the scale factor or the equation of state parameter. We have found that the model provides the desired early deceleration followed by present acceleration of the universe. The potential derived numerically in this work in the form [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] are real constant parameters. It has also been found that our model mimics as the standard [Formula: see text]CDM model in future. Finally, we have also shown the evolution of the normalized Hubble parameter for our model and the [Formula: see text]CDM model and compared that with the latest Hubble parameter data.


Sign in / Sign up

Export Citation Format

Share Document