Theoretical analyses of energy saving in a direct contact evaporative crystallization through the installation of heat pump

Desalination ◽  
2010 ◽  
Vol 251 (1-3) ◽  
pp. 47-52 ◽  
Author(s):  
Adnan M. Al-Harahsheh
2013 ◽  
Vol 331 ◽  
pp. 216-221
Author(s):  
Tian Lan Yu ◽  
Tian Xiang Yu ◽  
De Qi Peng ◽  
Li Chen ◽  
Xiu Yan Feng ◽  
...  

Aiming at increasing the energy-saving efficiency of salt solution evaporation, the effect of several factors on heat pump energy-saving efficiency is studied through theoretical analyses and calculation. The factors include boiling point elevation caused by solution static pressure, superheat loss of surface evaporation, temperature difference loss caused by fouling. The conclusions are that falling-film evaporator helps improve heat pump evaporation energy-saving the most and forms the fluctuating flow of the falling film which can be used to remove fouling automatically. The Φ38mm×2mm single-tube dynamics experiment results show that the flow can produce stable 3D vibration of the cleaning spiral when the nominal flow velocity is more than 0.25m/s. The axial reciprocating motion distance is longer than one spiral pitch and reciprocating periodicity is 3-6 seconds. The sodium carbonate solution fouling removal experiment results show that the salt fouling decreases the overall heat transfer coefficient by 30% in one hour when there is no the 3D vibrating spiral-insert; and the insert can enhance heat transfer by 59% comparing to that during stable operation without this technology. Key Words: Falling-film Evaporator, Heat Pump Evaporate, Energy saving, Automatic cleaning, Heat transfer


2020 ◽  
Vol 180 ◽  
pp. 107029
Author(s):  
Pin Wu ◽  
Zhichao Wang ◽  
Xiaofeng Li ◽  
Zhaowei Xu ◽  
Yingxia Yang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1321
Author(s):  
Yu-Jin Hwang ◽  
Jae-Weon Jeong

The objective of this research is to establish an appropriate operating strategy for a radiant floor heating system that additionally has an air source heat pump for providing convective air heating separately, leading to heating energy saving and thermal comfort in residential buildings. To determine the appropriate optimal operating ratio of each system taking charge of combined heating systems, the energy consumption of the entire system was drawn, and the adaptive floor surface temperature was reviewed based on international standards and literature on thermal comfort. For processing heating loads with radiant floor heating and air source heating systems, the heating capacity of radiant floor heating by 1 °C variation in floor temperature was calculated, and the remaining heating load was handled by the heating capacity of the convective air heating heat pump. Consequently, when the floor temperature was 25 °C, all heating loads were removed by radiant floor heating only. When handling all heating loads with the heat pump, 59.2% less energy was used compared with radiant floor heating only. Considering the local discomfort of the soles of the feet, the floor temperature is expected to be suitable at 22–23 °C, and 31.5–37.6% energy saving compared with those of radiant floor heating alone were confirmed.


2013 ◽  
Vol 724-725 ◽  
pp. 955-959
Author(s):  
Lei Sun ◽  
Jia Fu Xiao ◽  
Chun Yu Ran ◽  
Li Yun Zhang

According to China's current energy present situation, the use of renewable energy, saving energy and reducing consumption has become the energy industry development should follow the basic principles. Ground-source heat pump and conventional heat source composite system as a kind of building energy efficiency technology, mainly reflected in soil source heat pump renewable energy utilization aspects. In this paper the soil source heat pump and conventional heat source matching design and operation mode research, from the matching design principle chart, operation mode, the practical engineering application, economic and technical analysis into consideration, it is concluded that the soil source heat pump and conventional heat source composite system can be applied and research.


2020 ◽  
Author(s):  
Yan Chen ◽  
Karthikeya Devaprasad ◽  
Zhihong Pang ◽  
Cheryn E. Metzger
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document