scholarly journals Performance and energy consumption evaluation of a fertiliser drawn forward osmosis (FDFO) system for water recovery from brackish water

Desalination ◽  
2019 ◽  
Vol 456 ◽  
pp. 64-73 ◽  
Author(s):  
R. Lambrechts ◽  
M.S. Sheldon
Author(s):  
J. Martin ◽  
G. Kolliopoulos ◽  
V. G. Papangelakis

Abstract This work reports on efforts to develop an integrated continuous forward osmosis system for the recovery of water from wastewater streams, highlighting critical process parameters to minimize energy consumption. Forward osmosis experiments were performed using NaCl draw solutions of various concentrations and the intrinsic membrane parameters (water permeability, draw solution permeability, and structural parameter) were then determined via nonlinear regression using MATLAB. The experimental data was then used to validate a theoretical water flux model, which was subsequently applied to simulate the forward osmosis performance under different hydrodynamic conditions using both NaCl and TMA-CO2-H2O (TMA: trimethylamine) draw solutions. Analysis of the energy efficiency of the TMA-CO2 draw solution regeneration stage revealed that the draw solution flow rate has a significant impact on energy consumption. Also, increasing the feed flow rate was found to slightly enhance the water flux up to 2.5%, while having a negligible impact on the downstream regeneration process energy consumption.


2017 ◽  
Vol 63 ◽  
pp. 284-291 ◽  
Author(s):  
Syeed Md Iskander ◽  
Shiqiang Zou ◽  
Brian Brazil ◽  
John T. Novak ◽  
Zhen He

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 588
Author(s):  
Eiji Kamio ◽  
Hiroki Kurisu ◽  
Tomoki Takahashi ◽  
Atsushi Matsuoka ◽  
Tomohisa Yoshioka ◽  
...  

Forward osmosis (FO) membrane process is expected to realize energy-saving seawater desalination. To this end, energy-saving water recovery from a draw solution (DS) and effective DS regeneration are essential. Recently, thermo-responsive DSs have been developed to realize energy-saving water recovery and DS regeneration. We previously reported that high-temperature reverse osmosis (RO) treatment was effective in recovering water from a thermo-responsive ionic liquid (IL)-based DS. In this study, to confirm the advantages of the high-temperature RO operation, thermo-sensitive IL-based DS was treated by an RO membrane at temperatures higher than the lower critical solution temperature (LCST) of the DS. Tetrabutylammonium 2,4,6-trimethylbenznenesulfonate ([N4444][TMBS]) with an LCST of 58 °C was used as the DS. The high-temperature RO treatment was conducted at 60 °C above the LCST using the [N4444][TMBS]-based DS-lean phase after phase separation. Because the [N4444][TMBS]-based DS has a significantly temperature-dependent osmotic pressure, the DS-lean phase can be concentrated to an osmotic pressure higher than that of seawater at room temperature (20 °C). In addition, water can be effectively recovered from the DS-lean phase until the DS concentration increased to 40 wt%, and the final DS concentration reached 70 wt%. From the results, the advantages of RO treatment of the thermo-responsive DS at temperatures higher than the LCST were confirmed.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 566
Author(s):  
Ruwaida Abdul Wahid ◽  
Wei Lun Ang ◽  
Abdul Wahab Mohammad ◽  
Daniel James Johnson ◽  
Nidal Hilal

Fertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity. Six commonly used fertilizers were screened and assessed in terms of pure water flux (Jw) and reverse salt flux (JS). Ammonium sulfate ((NH4)2SO4), mono-ammonium phosphate (MAP), and potassium chloride (KCl) were further evaluated with An-POME. MAP showed the best performance against An-POME, with a high average water flux, low flux decline, the highest performance ratio (PR), and highest water recovery of 5.9% for a 4-h operation. In a 24-h fouling run, the average flux decline and water recovered were 84% and 15%, respectively. Both hydraulic flushing and osmotic backwashing cleaning were able to effectively restore the water flux. The results demonstrated that FDFO using commercial fertilizers has the potential for the treatment of An-POME for water recovery. Nevertheless, further investigation is needed to address challenges such as JS and the dilution factor of DS for direct use of fertigation.


2021 ◽  
Vol 11 (4) ◽  
pp. 1481
Author(s):  
Aleksandra Cichoń ◽  
William Worek

This paper presents the analytical investigation of a novel system for combined Dew Point Cooling and Water Recovery (DPC-WR system). The operating principle of the presented system is to utilize the dew point cooling phenomenon implemented in two stages in order to obtain both air cooling and water recovery. The system performance is described by different indicators, including the coefficient of performance (COP), gained output ratio (GOR), energy utilization factor (EUF), specific energy consumption (SEC) and specific daily water production (SDWP). The performance indicators are calculated for various climatic zones using a validated analytical model based on the convective heat transfer coefficient. By utilizing the dew point cooling phenomenon, it is possible to minimize the heat and electric energy consumption from external sources, which results in the COP and GOR values being an order of magnitude higher than for other cooling and water recovery technologies. The EUF value of the DPC-WR system ranges from 0.76 to 0.96, with an average of 0.90. The SEC value ranges from 0.5 to 2.0 kWh/m3 and the SDWP value ranges from 100 to 600 L/day/(kg/s). In addition, the DPC-WR system is modular, i.e., it can be multiplied as needed to achieve the required cooling or water recovery capacity.


2018 ◽  
Vol 80 (3-2) ◽  
Author(s):  
Ngan T. B. Dang ◽  
Liza B. Patacsil ◽  
Aileen H. Orbecido ◽  
Ramon Christian P. Eusebio ◽  
Arnel B. Beltran

Water resources are very important to sustain life. However, these resources have been subjected to stress due to population growth, economic and industrial growth, pollution and climate change. With these, the recovery of water from sources such as wastewater, dirty water, floodwater and seawater is a sustainable alternative. The potential of recovering water from these sources could be done by utilizing forward osmosis, a membrane process that exploits the natural osmotic pressure gradient between solutions which requires low energy operation. This study evaluated the potential of forward osmosis (FO) composite membranes fabricated from bacterial cellulose (BC) and modified with sodium alginate. The membranes were evaluated for water flux and salt rejection. The effect of alginate concentrations and impregnation temperatures were evaluated using 0.6 M sodium chloride solution as feed and 2 M glucose solution as the draw solution. The membranes were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Contact Angle Meter (CAM). The use of sodium alginate in BC membrane showed a thicker membrane (38.3 μm to 67.6 μm), denser structure (shown in the SEM images), and more hydrophilic (contact angle ranges from 28.39° to 32.97°) compared to the pristine BC membrane (thickness = 12.8 μm and contact angle = 66.13°). Furthermore, the alginate modification lowered the water flux of the BC membrane from 9.283 L/m2-h (LMH) to value ranging from 2.314 to 4.797 LMH but the improvement in salt rejection was prominent (up to 98.57%).


Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 307
Author(s):  
Stavros Kalafatakis ◽  
Agata Zarebska ◽  
Lene Lange ◽  
Claus Hélix-Nielsen ◽  
Ioannis V. Skiadas ◽  
...  

Forward Osmosis (FO) is a promising technology that can offer sustainable solutions in the biorefinery wastewater and desalination fields, via low energy water recovery. However, microbial biomass and organic matter accumulation on membrane surfaces can hinder the water recovery and potentially lead to total membrane blockage. Biofouling development is a rather complex process and can be affected by several factors such as nutrient availability, chemical composition of the solutions, and hydrodynamic conditions. Therefore, operational parameters like cross-flow velocity and pH of the filtration solution have been proposed as effective biofouling mitigation strategies. Nevertheless, most of the studies have been conducted with the use of rather simple solutions. As a result, biofouling mitigation practices based on such studies might not be as effective when applying complex industrial mixtures. In the present study, the effect of cross-flow velocity, pH, and cell concentration of the feed solution was investigated, with the use of complex solutions during FO separation. Specifically, fermentation effluent and crude glycerol were used as a feed and draw solution, respectively, with the purpose of recirculating water by using FO alone. The effect of the abovementioned parameters on (i) ATP accumulation, (ii) organic foulant deposition, (iii) total water recovery, (iv) reverse glycerol flux, and (v) process butanol rejection has been studied. The main findings of the present study suggest that significant reduction of biofouling can be achieved as a combined effect of high-cross flow velocity and low feed solution pH. Furthermore, cell removal from the feed solution prior filtration may further assist the reduction of membrane blockage. These results may shed light on the challenging, but promising field of FO process dealing with complex industrial solutions.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 107 ◽  
Author(s):  
Li Li ◽  
Wenxin Shi ◽  
Shuili Yu

Forward osmosis (FO) has become an evolving membrane separation technology to recover water due to its strong retention capacity, sustainable membrane fouling, etc. Although a good deal of research has been extensively investigated in the past decades, major challenges still remain as follows: (1) the novel FO membrane material properties, which significantly influence the fouling of the FO membranes, the intolerance reverse solute flux (RSF), the high concentration polarization (CP), and the low permeate flux; (2) novel draw solution preparation and utilization; (3) salinity build-up in the FO system; (4) the successful implementation of the FO process. This work critically reviews the last five years’ literature in development of the novel FO membrane material, structure in modification, and preparation, including comparison and analysis on the traditional and novel draw solutes coupled with their effects on FO performance; application in wastewater treatment, especially hybrid system and integrated FO system; fouling mechanism; and cleaning strategy as discussed in the literature. The current barriers of the research results in each hotspot and the areas that can be improved are also analyzed in detail. The research hotspots in the research and development of the novel membrane materials in various countries and regions have been compared in recent years, and the work of variation in pop research hotspots in the past 10 years has been analyzed and the ideas that fill the blank gaps also have been proposed.


Sign in / Sign up

Export Citation Format

Share Document