scholarly journals Research on Forward Osmosis Membrane Technology Still Needs Improvement in Water Recovery and Wastewater Treatment

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 107 ◽  
Author(s):  
Li Li ◽  
Wenxin Shi ◽  
Shuili Yu

Forward osmosis (FO) has become an evolving membrane separation technology to recover water due to its strong retention capacity, sustainable membrane fouling, etc. Although a good deal of research has been extensively investigated in the past decades, major challenges still remain as follows: (1) the novel FO membrane material properties, which significantly influence the fouling of the FO membranes, the intolerance reverse solute flux (RSF), the high concentration polarization (CP), and the low permeate flux; (2) novel draw solution preparation and utilization; (3) salinity build-up in the FO system; (4) the successful implementation of the FO process. This work critically reviews the last five years’ literature in development of the novel FO membrane material, structure in modification, and preparation, including comparison and analysis on the traditional and novel draw solutes coupled with their effects on FO performance; application in wastewater treatment, especially hybrid system and integrated FO system; fouling mechanism; and cleaning strategy as discussed in the literature. The current barriers of the research results in each hotspot and the areas that can be improved are also analyzed in detail. The research hotspots in the research and development of the novel membrane materials in various countries and regions have been compared in recent years, and the work of variation in pop research hotspots in the past 10 years has been analyzed and the ideas that fill the blank gaps also have been proposed.

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 597
Author(s):  
Yi-Li Lin ◽  
Bharath Samannan ◽  
Kuo-Lun Tung ◽  
Jeyabalan Thavasikani ◽  
Cheng-Di Dong ◽  
...  

In order to overcome the challenges of low permeate flux (Jp) and the accompanying reverse solute flux (JS) during the forward osmosis (FO) membrane separation process, we synthesized four hybrid materials of polyacid-based organic compounds and incorporated them into the selective polyamide (PA) layer to make novel thin-film nanocomposite (TFN) FO membranes. The Jp and JS of each membrane were evaluated and used along with membrane selectivity (Jp/JS) as indicators of membrane separation performance. The fabricated and modified membranes were also characterized for ridge and valley surface morphologies with increasing hydrophilicity and finger-shaped parallel channels in the PSf substrate. Moreover, two highly hydrophilic nanoparticles of graphene oxide (GO) and titanium oxide (TiO2) were introduced with the hybrid materials for PA modification, which can further enhance the Jp of the TFN membranes. The highest Jp of the TFN membranes achieved 12.1 L/m2-h using 0.1% curcumin-acetoguanamine @ cerium polyacid (CATCP) and 0.0175% GO. The characteristic peaks of the hybrid materials were detected on the membrane surface using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, evidencing successful incorporation of the hybrid materials during membrane modification. Here, we present the novel TFN membranes using hybrid materials for separation applications. The reactions for synthesizing the hybrid materials and for incorporating them with PA layer are proposed.


2018 ◽  
Vol 34 (6) ◽  
pp. 767-795 ◽  
Author(s):  
Qiaozhen Chen ◽  
Wenxuan Xu ◽  
Qingchun Ge

Abstract Forward osmosis (FO) has developed rapidly over the past decade. The development of draw solutes, a key component of FO processes, has also progressed remarkably. A wide range of synthetic draw solutes have been explored in recent years. Synthetic draw solutes exhibit superiority over the conventional draw solutes obtained commercially in terms of lower reverse solute fluxes and less energy consumption in draw solute recycling. However, there are still some big challenges for synthetic draw solutes, such as complicated synthetic procedures, low water fluxes, severe concentration polarization (CP) and decreased water recovery efficiency when recycled draw solutes are reused in FO. These challenges are also the current research focus on the exploration of novel draw solutes. This article aims to review the recent progress especially on synthetic draw solutes. Their design strategies, synthesis routes and FO performance are assessed. Some representative applications involving the synthetic draw solutes-facilitated FO processes are exemplified. The advantages and disadvantages of the existing synthetic draw solutions are evaluated. The challenges and future directions in exploring novel draw solutes are highlighted.


2020 ◽  
Vol 12 (18) ◽  
pp. 7611
Author(s):  
Mahdi Hassan ◽  
Guangcan Zhu ◽  
Zhonglian Yang ◽  
Yongze Lu ◽  
Yan Lang ◽  
...  

Emerging pollutants in the form of pharmaceuticals have drawn international attention during the past few decades. Ciprofloxacin (CIP) is a common drug widely found in effluents from hospitals, industrial and different wastewater treatment plants, as well as rivers. In this work, the lab-scale 3D-BER system was established, and more than 90% of the antibiotic CIP was removed from Low C/N wastewater. The best results were obtained with the current intensity being taken into account, and a different C/N ratio significantly improved the removal of CIP and nitrates when the ideal conditions were C/N = 1.5–3.5, pH = 7.0–7.5 and I = 60 mA. The highest removal efficiency occurred when CIP = 94.2%, NO3−-N = 95.5% and total nitrogen (TN) = 84.3%, respectively. In this novel system, the autotrophic-heterotrophic denitrifying bacteria played a vital role in the removal of CIP and an enhanced denitrification process. Thus, autotrophic denitrifying bacteria uses CO2 and H2 as carbon sources to reduce nitrates to N2. This system has the assortment and prosperous community revealed at the current intensity of 60 mA, and the analysis of bacterial community structure in effluent samples fluctuates under different conditions of C/N ratios. Based on the results of LC-MS/MS analysis, the intermediate products were proposed after efficient biodegradation of CIP. The microbial community on biodegrading was mostly found at phylum, and the class level was dominantly responsible for the NO3−-N and biodegradation of CIP. This work can provide some new insights towards the biodegradation of CIP and the efficient removal of nitrates from low C/N wastewater treatment through the novel 3D-BER system.


2021 ◽  
Author(s):  
Mohamed Bassiouny ◽  
Peter Nasr ◽  
Hani Sewilam

Abstract This research project aims at investigating the performance of hydroponic nutrient solutions as draw solutions for desalination using the fertilizer drawn forward osmosis (FDFO) process. Six different lettuce and leafy greens hydroponic nutrient stock solutions were prepared according to the literature and used in this study and tested on a bench-scale forward osmosis unit as draw solutions for the process. The feed solution for the process was De-Ionized water mixed with NaCl in different concentrations, to represent different salinities of brackish groundwater. The draw efficiency of each solution was measured based on water flux, specific reverse solute flux, water recovery, and salt rejection. It was concluded that of the six tested nutrient solutions, the “Resh Florida, California” solution is the recommended solution to be used as draw solution for fertilizer drawn forward osmosis, due to its high performance in terms of water recovery (15.75%), flux (11 l/m2/h), salt rejection (92%) and SRSF (highest recorded SRSF for a specific ion (SO4 2−) was 7.3 g/l), as well as its low cost, relative to the other highly performing draw solution “Chekli” ($1.07/l vs. $3.73/l).


2021 ◽  
Author(s):  
Vibha Agrawal ◽  
Dilip Sarode ◽  
Saransh Mogha ◽  
Bharat Honmane

Abstract Recognizing the issues with conventional water resources and stricter wastewater effluent disposal standards, the treatment and recovery from wastewater are gaining impetus. The dairy industry consumes a substantial amount of water and generates a massive quantity of wastewater annually. Whey, which is about 94% water, is a waste stream produced in the dairy industry during the manufacture of cheese, paneer, yogurt, etc. Although various wastewater treatment technologies are available in the market, membrane technologies are considered the most advanced and reliable ones, but they are expensive. In recent years, Forward Osmosis (FO) is looked upon as a potential alternative to these costly and energy intensive pressure driven membrane processes. FO works on the principle of natural osmotic pressure where energy is just required to lift the solutions. The present lab-scale study investigates the partial reclamation of water from whey using FO technology. The Continuous Single Pass (CSP) and Recirculation mode (RC) study is conducted using high osmotic pressure (π = 375 bar at 298K) saturated aqueous(aq.) NaCl as the draw solution. The aq. NaCl solution is a potential brine stream in the dairy industry and finds applications in the manufacture of paneer, butter, cheese and ice cream eliminating the need for draw regeneration. The back diffusion study of the Hollow Fibre Forward Osmosis (HFFO) membrane revealed about 0.82% back diffusion of solute. The maximum water recovery of ~ 56% is achieved in CSP mode while 57.6% is achieved for RC mode with Feed/Draw ratio of 4.5:1. For F/D of 10:1, the maximum permeate flux of ~ 8.7 kg m− 2 h− 1 is observed for the CSP mode of operation for 10 minutes of study. Thus, FO is an efficient membrane technique that eliminates the need for draw regeneration and can be applied in the dairy industry.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Calen R. Raulerson ◽  
Sudeep C. Popat ◽  
Scott M. Husson

This paper reports on the use of forward osmosis (FO) with polyelectrolyte draw solutions to recover water from bioreactor mixed liquors. The work was motivated by the need for new regenerative water purification technologies to enable long-duration space missions. Osmotic membrane bioreactors may be an option for water and nutrient recovery in space if they can attain high water flux and reverse solute flux selectivity (RSFS), which quantifies the mass of permeated water per mass of draw solute that has diffused from the draw solution into a bioreactor. Water flux was measured in a direct flow system using wastewater from a municipal wastewater treatment plant and draw solutions prepared with two polyelectrolytes at different concentrations. The direct flow tests displayed a high initial flux (>10 L/m2/h) that decreased rapidly as solids accumulated on the feed side of the membrane. A test with deionized water as the feed revealed a small mass of polyelectrolyte crossover from the draw solution to the feed, yielding an RSFS of 80. Crossflow filtration experiments demonstrated that steady state flux above 2 L/m2·h could be maintained for 70 h following an initial flux decline due to the formation of a foulant cake layer. This study established that FO could be feasible for regenerative water purification from bioreactors. By utilizing a polyelectrolyte draw solute with high RSFS, we expect to overcome the need for draw solute replenishment. This would be a major step towards sustainable operation in long-duration space missions.


2018 ◽  
pp. 80-89
Author(s):  
Willi H. Hager

The Hydraulic Laboratory of Liège University, Belgium, is historically considered from its foundation in 1937 to the mid-1960s. The technical facilities of the various Buildings are highlighted, along with canals and instrumentation available. It is noted that in its initial era, comparatively few basic research has been conducted, mainly due to the professional background of the professors leading the establishment. This state was improved in the past 50 years, however, particularly since the Laboratory was dislocated to its current position in the novel University Campus. Biographies of the leading persons associated with the Liège Hydraulic Laboratory are also presented, so that a comprehensive picture is given of one of the currently leading hydraulic Laboratories of Europe.


1996 ◽  
Vol 8 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Ken Bartley

This paper discusses the need for nationally based analytical models of the medieval period. The use of cluster analysis as a method for classifying demesne farms, by the crops they grew and their livestock management, is explained. Successful implementation of cluster analysis requires both the existence of a large base sample, to permit isolation of specific groupings within the data, and access to considerable processing time. The paper concludes by demonstrating how discriminant analysis can provide an efficient and systematic way of classifying even a single manor within a national frame of reference.


Sign in / Sign up

Export Citation Format

Share Document