Postnatal handling does not normalize hypothalamic corticotropin-releasing factor mRNA levels in animals prenatally exposed to ethanol

2005 ◽  
Vol 157 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Kara I. Gabriel ◽  
Maria M. Glavas ◽  
Linda Ellis ◽  
Joanne Weinberg
1998 ◽  
Vol 83 (2) ◽  
pp. 448-452
Author(s):  
H. F. Erden ◽  
I. H. Zwain ◽  
H. Asakura ◽  
S. S. C. Yen

Recently, we reported that the thecal compartment of the human ovary contains a CRF system replete with gene expression and protein for corticotropin-releasing factor (CRF), CRF-Receptor 1 (CRF-R1), and the blood-derived high affinity CRF-binding protein (CRF-BP). Granulosa cells are devoid of the CRF system. The parallel increases in intensity of CRF, CRF-R1, and 17α-hydroxylase messenger ribonucleic acid (mRNA) and proteins in thecal cells with follicular maturation suggest that the intraovarian CRF system may play an autocrine role regulating androgen biosynthesis, with a downstream effect on estrogen production by granulosa cells. The functionality of the ovarian CRF system may be conditioned by the relative presence of plasma-derived CRF-BP by virtue of its localization of protein, but not transcript in thecal cells and its ability to compete with CRF for the CRF receptor. To further these findings, in the present study we have examined the effect of CRF on LH-stimulated 17α-hydroxylase (P450c17) gene expression and androgen production by isolated thecal cells from human ovarian follicles (11–13 mm). During the 48-h culture, addition of LH (10 ng/mL) to the medium increased by 5- and 6-fold dehydroepiandrosterone and androstenedione production by thecal cells. Remarkably, the LH-stimulated, but not basal, androgen production was inhibited by CRF in a time- and dose-dependent manner. The half-maximal (ID50) effect dose of CRF occurred at 5 × 10−8 mol/L, and at a maximal concentration of 10−6 mol/L, CRF completely inhibited LH-stimulated androgen production. This inhibitory effect of CRF became evident at 12 h (45%), and by 24 h the effect was more pronounced, with a 70% reduction from baseline. As determined by Northern analyses, CRF dose dependently decreased LH-stimulated P450c17 mRNA levels, with a maximal inhibition of 85% P450c17 gene expression at a CRF concentration of 10−6 mol/L. With the addition of 10−6 mol/L of the antagonist α-helical CRF-(9–41), the inhibitory effect of CRF was partially reversed for both P450c17 mRNA (75%) and androgen production (50%), indicating the CRF-R1-mediated event. In conclusion, the present study demonstrated a potent inhibitory effect of CRF on LH-stimulated dehydroepiandrosterone and androstenedione production that appears to be mediated through the reduction of P450c17 gene expression. Thus, the ovarian CRF system may function as autocrine regulators for androgen biosynthesis in the thecal cell compartment to maintain optimal substrate for estrogen biosynthesis by granulosa cells. Further studies to define the role of CRF-BP in the endocrine modulation of the intraovarian CRF system are needed.


2002 ◽  
Vol 282 (2) ◽  
pp. E466-E473 ◽  
Author(s):  
Junko Hanafusa ◽  
Tomoatsu Mune ◽  
Tetsuya Tanahashi ◽  
Yukinori Isomura ◽  
Tetsuya Suwa ◽  
...  

To evaluate the effects of altered corticosteroid metabolism on the hypothalamic-pituitary-adrenal axis, we examined rats treated with glycyrrhizic acid (G rats) or rifampicin (R rats) for 7 days. The half-life of exogenously administered hydrocortisone as a substitute for corticosterone was longer in G rats and shorter in R rats, with no differences in basal plasma levels of ACTH or corticosterone. The ACTH responses to human corticotropin-releasing factor (CRF) or insulin-induced hypoglycemia were greater in G rats and tended to be smaller in R rats compared with those in the control rats, whereas the corticosterone response was similar. No difference was observed in the content and mRNA level of hypothalamic CRF among the groups. The number and mRNA level of CRF receptor and type 1 11β-hydroxysteroid dehydrogenase (11-HSD1) mRNA level in the pituitary were increased in G rats but not changed in R rats, suggesting that chronically increased intrapituitary corticosterone upregulates pituitary CRF receptor expression. In contrast, CRF mRNA levels in the pituitary were increased in R rats. Our data indicate novel mechanisms of corticosteroid metabolic modulation and the involvement of pituitary 11-HSD1 and CRF in glucocorticoid feedback physiology.


2005 ◽  
Vol 289 (4) ◽  
pp. R982-R990 ◽  
Author(s):  
Nicholas J. Bernier ◽  
Paul M. Craig

Hypoxia stress suppresses appetite in a variety of fish species, but the mechanisms mediating this response are not known. Therefore, given their anorexigenic and hypophysiotropic properties, we investigated the contribution of forebrain corticotropin-releasing factor (CRF) and urotensin I (UI) to the regulation of food intake and the hypothalamic-pituitary-interrenal (HPI) stress axis in hypoxic rainbow trout. Exposure to 50 and 35% O2 saturation for 24 h decreased food intake by 28 and 48%, respectively. The 35% O2 treatment also increased forebrain CRF and UI mRNA levels, plasma cortisol, and lactate. Exposure for 72 h to the same conditions resulted in similar reductions in food intake, increases in plasma cortisol proportional to the hypoxia severity, and increases in forebrain CRF and UI mRNA levels in the 50% O2 treatment. Relative to saline-infused fish, chronic intracranial infusion of the CRF receptor antagonist α-helical CRF(9–41) reduced the appetite-suppressing effects of 24-h exposure to 35% O2 and blocked the hypoxia-induced increase in plasma cortisol. Finally, forebrain microdissection revealed that 50 and 35% O2 exposure for 24 h specifically increases preoptic area CRF and UI mRNA levels in proportion to the severity of the hypoxic challenge and either has no effect or elicits small decreases in other forebrain regions. These results show that CRF-related peptides play a physiological role in regulating the HPI axis and in mediating at least a portion of the reduction in food intake under hypoxic conditions in rainbow trout and demonstrate that the response of forebrain CRF and UI neurons to this stressor is region specific.


2015 ◽  
Vol 33 (7_suppl) ◽  
pp. 466-466
Author(s):  
Hossein Tezval ◽  
Axel S. Merseburger ◽  
Markus A. Kuczyk ◽  
Christoph von Klot ◽  
Juergen Serth

466 Background: Urocortin (Ucn), a 40 amino acid peptide, belongs to the corticotropin releasing factor (CRF) family and exerts its actions mainly in the periphery through activation of two CRF receptors (CRFRs), CRFR1 and CRFR2 and a binding protein (CRFBP/CRHBP). Both receptors are G-protein coupled and binding of Ucn leads to activation of cAMP-dependent protein kinases via elevation of cAMP levels. Ucn and Urocortin III (UcnIII) are involved in conditions such as regulation of local inflammation, angiogenesis, and inhibition of proliferation. Suppression of neovascularization and inhibition of tumor cell cycling by Urocortins is modulated through CRFRs. Activation of CRFRs by e.g. Ucn inhibits angiogenesis via reduction of vascular endothelial growth factor (VEGF) and suppresses the cell proliferation. Here we characterized the whole CRF family on mRNA levels quantitatively comparing the normal and clear cell carcinoma of the kidney (ccRCC). Methods: In this study we measured the mRNA level of Ucn, UcnIII, CRFR1, CRFR2 and CRHBP in 78 RCC samples and paired histologically normal appearing tissues using quantitative PCR. Statistical analyses were carried out using univariate logistic regression analysis. Results: We found tumour specific down regulation of mRNA expression of UcnIII, CRFR1, CRFR2 and CRHBP in samples of RCCs with clear cell histology compared to paired normal tissues (P<0.01 for all targets). Only Ucn did not show any expression difference between two groups (p=0.17). Conclusions: For the first time we showed the expression profile of the whole CRF peptide family in ccRCC compared to normal kidney on mRNA level. Our data underlines the malfunction of this actually strong protective and anticancer system in renal malignancy and shows the involvement of CRF system in carcinogenesis in kidney. More studies are necessary to find out the detailed roles of the CRF system in renal carcinoma.


2013 ◽  
Vol 50 (4) ◽  
pp. 364-369 ◽  
Author(s):  
Takaoki Saneyasu ◽  
Kiwako Nakanishi ◽  
Hiroyuki Atsuta ◽  
Atsushi Ikura ◽  
Hiroshi Kamisoyama ◽  
...  

2005 ◽  
Vol 186 (1) ◽  
pp. 123-130 ◽  
Author(s):  
C Doyon ◽  
V L Trudeau ◽  
T W Moon

The objectives of this study were to characterize rainbow trout (Oncorhynchus mykiss) corticotropin-releasing factor (CRF)-binding protein (CRF-BP) cDNA and to examine the variations in CRF-BP and CRF mRNA levels in response to different intensities of stress. Trout were physically disturbed by a single or three consecutive periods of chasing until exhaustion followed by 2 h of recovery. The pituitary CRF-BP and preoptic area CRF1 mRNA contents were significantly increased only after repeated chasing events. Physical disturbance increased plasma cortisol levels with the largest change occurring in the group of trout that were exposed to repeated chasing events. Trout were also individually isolated in 120 l tanks or confined to 1.5 l boxes for 4, 24 or 72 h. CRF-BP mRNA levels in confined fish were greater than those of isolated fish at 72 h although there were no differences compared with the control group. CRF1 mRNA levels in the preoptic area were greater and remained elevated for a longer period in confined compared with isolated trout. Isolation led to a transient increase in plasma cortisol levels, but the higher cortisol values developed in the confined fish suggest that this treatment was more stressful than isolation. These results demonstrate that the intensity and duration of stress are important factors regulating CRF and CRF-BP mRNA levels in rainbow trout. We hypothesize that pituitary CRF-BP is involved in regulating the activity of the stress axis, possibly by reducing access to CRF1 receptors in the corticotropes.


2021 ◽  
Vol 22 (8) ◽  
pp. 3940
Author(s):  
Yukiomi Nakade ◽  
Rena Kitano ◽  
Taeko Yamauchi ◽  
Satoshi Kimoto ◽  
Kazumasa Sakamoto ◽  
...  

Corticotropin-releasing factor (CRF) in the brain acts on physiological and pathophysiological modulation of the hepatobiliary system. Central CRF administration aggravates experimental acute liver injury by decreasing hepatic blood flow. Conversely, minimal evidence is available regarding the effect of centrally acting CRF on hepatic lipid metabolism and inflammation. We examined whether central CRF affects hepatic lipid metabolism and inflammation-related gene expression in rats. Male Long Evans rats were intracisternally injected with CRF (10 μg) or saline. Rats were sacrificed 2 h, 6 h, and 24 h after the CRF injection, the liver was isolated, and mRNA was extracted. Next, hepatic lipid metabolism and inflammation-related gene expression were examined. Hepatic SREBF1 (sterol regulatory element-binding transcription factor 1) mRNA levels were significantly increased 6 h and 24 h after intracisternal CRF administration when compared with those in the control group. Hepatic TNFα and IL1β mRNA levels increased significantly 6 h after intracisternal CRF administration. Hepatic sympathectomy or guanethidine treatment, not hepatic branch vagotomy or atropine treatment, inhibited central CRF-induced increase in hepatic SREBF1, TNFα and IL1β mRNA levels. These results indicated that central CRF affects hepatic de novo lipogenesis and inflammation-related gene expression through the sympathetic-noradrenergic nervous system in rats.


2015 ◽  
Vol 27 (1) ◽  
pp. 123-135 ◽  
Author(s):  
Rick H. A. van der Doelen ◽  
Ilse A. Arnoldussen ◽  
Hussein Ghareh ◽  
Liselot van Och ◽  
Judith R. Homberg ◽  
...  

AbstractThe interaction between childhood maltreatment and the serotonin transporter (5-HTT) gene linked polymorphic region has been associated with increased risk to develop major depression. This Gene × Environment interaction has furthermore been linked with increased levels of anxiety and glucocorticoid release upon exposure to stress. Both endophenotypes are regulated by the neuropeptide corticotropin-releasing factor (CRF) or hormone, which is expressed by the paraventricular nucleus of the hypothalamus, the bed nucleus of the stria terminalis, and the central amygdala (CeA). Therefore, we hypothesized that altered regulation of the expression of CRF in these areas represents a major neurobiological mechanism underlying the interaction of early life stress and 5-HTT gene variation. The programming of gene transcription by Gene × Environment interactions has been proposed to involve epigenetic mechanisms such as DNA methylation. In this study, we report that early life stress and 5-HTT genotype interact to affect DNA methylation of the Crf gene promoter in the CeA of adult male rats. Furthermore, we found that DNA methylation of a specific site in the Crf promoter significantly correlated with CRF mRNA levels in the CeA. Moreover, CeA CRF mRNA levels correlated with stress coping behavior in a learned helplessness paradigm. Together, our findings warrant further investigation of the link of Crf promoter methylation and CRF expression in the CeA with behavioral changes that are relevant for psychopathology.


Sign in / Sign up

Export Citation Format

Share Document