scholarly journals Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos

2016 ◽  
Vol 36 (2) ◽  
pp. 225-240 ◽  
Author(s):  
Johannes Stegmaier ◽  
Fernando Amat ◽  
William C. Lemon ◽  
Katie McDole ◽  
Yinan Wan ◽  
...  
2021 ◽  
Vol 13 (5) ◽  
pp. 2950
Author(s):  
Su-Kyung Sung ◽  
Eun-Seok Lee ◽  
Byeong-Seok Shin

Climate change increases the frequency of localized heavy rains and typhoons. As a result, mountain disasters, such as landslides and earthworks, continue to occur, causing damage to roads and residential areas downstream. Moreover, large-scale civil engineering works, including dam construction, cause rapid changes in the terrain, which harm the stability of residential areas. Disasters, such as landslides and earthenware, occur extensively, and there are limitations in the field of investigation; thus, there are many studies being conducted to model terrain geometrically and to observe changes in terrain according to external factors. However, conventional topography methods are expressed in a way that can only be interpreted by people with specialized knowledge. Therefore, there is a lack of consideration for three-dimensional visualization that helps non-experts understand. We need a way to express changes in terrain in real time and to make it intuitive for non-experts to understand. In conventional height-based terrain modeling and simulation, there is a problem in which some of the sampled data are irregularly distorted and do not show the exact terrain shape. The proposed method utilizes a hierarchical vertex cohesion map to correct inaccurately modeled terrain caused by uniform height sampling, and to compensate for geometric errors using Hausdorff distances, while not considering only the elevation difference of the terrain. The mesh reconstruction, which triangulates the three-vertex placed at each location and makes it the smallest unit of 3D model data, can be done at high speed on graphics processing units (GPUs). Our experiments confirm that it is possible to express changes in terrain accurately and quickly compared with existing methods. These functions can improve the sustainability of residential spaces by predicting the damage caused by mountainous disasters or civil engineering works around the city and make it easy for non-experts to understand.


2021 ◽  
Vol 18 (9) ◽  
pp. 1038-1045
Author(s):  
Christoffer Edlund ◽  
Timothy R. Jackson ◽  
Nabeel Khalid ◽  
Nicola Bevan ◽  
Timothy Dale ◽  
...  

AbstractLight microscopy combined with well-established protocols of two-dimensional cell culture facilitates high-throughput quantitative imaging to study biological phenomena. Accurate segmentation of individual cells in images enables exploration of complex biological questions, but can require sophisticated imaging processing pipelines in cases of low contrast and high object density. Deep learning-based methods are considered state-of-the-art for image segmentation but typically require vast amounts of annotated data, for which there is no suitable resource available in the field of label-free cellular imaging. Here, we present LIVECell, a large, high-quality, manually annotated and expert-validated dataset of phase-contrast images, consisting of over 1.6 million cells from a diverse set of cell morphologies and culture densities. To further demonstrate its use, we train convolutional neural network-based models using LIVECell and evaluate model segmentation accuracy with a proposed a suite of benchmarks.


2018 ◽  
Vol 3 (3) ◽  
pp. 1584-1591 ◽  
Author(s):  
Enrico Piazza ◽  
Andrea Romanoni ◽  
Matteo Matteucci

2013 ◽  
Vol 650 ◽  
pp. 518-522
Author(s):  
Juan Xiao

Main characteristics of recent human motion capture systems are analyzed in the paper firstly. Based on that, a new multi-user aerobics wireless human motion capture system based on MEMS is proposed. Design of its framework and core technology solutions including large-scale data obtain, multi-hop wireless sensor and high-frequency real-time transmission are put forward. Finally, three-dimensional real-time reconstructions of the multi-user aerobics wireless motion capture system are showed in the paper.


2021 ◽  
Vol 13 (11) ◽  
pp. 2154
Author(s):  
Gabbo P. H. Ching ◽  
Ray K. W. Chang ◽  
Tess X. H. Luo ◽  
Wallace W. L. Lai

Three-dimensional GPR imaging requires evenly and densely distributed measurements, ideally collected without the need for ground surface markings, which is difficult to achieve in large-scale surveys. In this study, a guidance system was developed to guide the GPR operator to walk along a predesigned traverse, analogous to the flight path design of an airborne drone. The guidance system integrates an auto-track total station unit (ATTS), and by estimating the real-time offset angle and distance, guidance corrections can be provided to the operator in real time. There are two advantages: (1) reduced survey time as grid marking on the ground is no longer needed and (2) accurate positioning of each traverse. Lab and field experiments were conducted in order to validate the guidance system. The results show that with the guidance system, the survey paths were better defined and followed in terms of feature connectivity and resolution of images, and the C-scans generated were closer to the real subsurface world.


2006 ◽  
Vol 1 (4) ◽  
pp. 2116-2127 ◽  
Author(s):  
Gregory P Botta ◽  
Prakash Manley ◽  
Steven Miller ◽  
Peter I Lelkes

Author(s):  
Nathan J. Jenness ◽  
Daniel G. Cole ◽  
Robert L. Clark

In this paper we present a lithographic process with the ability to automatically translate and arbitrarily position three-dimensional (3D) computer-generated patterns through the use of phase holograms. This method, dynamic maskless holographic lithography (DMHL), advances current photo-directed patterning and functionalization capabilities by expanding the capability to manipulate light in real-time without the use of expensive fixed masks. The system could be used for large-scale parallel manufacturing over larger areas and for point specific serial fabrication, interrogation, and metrology. The use of coherent illumination allows for the direct creation of 3D patterns of light for lithography as opposed to the mechanical stage, layer-by-layer 3D fabrication approach typical of direct-write systems. Extrinsic control over interfacial properties will provide a method for addressing aqueous phase bionanotechnolgy experimental systems in which detection, separation, transport, and handling are vital.


Sign in / Sign up

Export Citation Format

Share Document