scholarly journals GPR Virtual Guidance System for Subsurface 3D Imaging

2021 ◽  
Vol 13 (11) ◽  
pp. 2154
Author(s):  
Gabbo P. H. Ching ◽  
Ray K. W. Chang ◽  
Tess X. H. Luo ◽  
Wallace W. L. Lai

Three-dimensional GPR imaging requires evenly and densely distributed measurements, ideally collected without the need for ground surface markings, which is difficult to achieve in large-scale surveys. In this study, a guidance system was developed to guide the GPR operator to walk along a predesigned traverse, analogous to the flight path design of an airborne drone. The guidance system integrates an auto-track total station unit (ATTS), and by estimating the real-time offset angle and distance, guidance corrections can be provided to the operator in real time. There are two advantages: (1) reduced survey time as grid marking on the ground is no longer needed and (2) accurate positioning of each traverse. Lab and field experiments were conducted in order to validate the guidance system. The results show that with the guidance system, the survey paths were better defined and followed in terms of feature connectivity and resolution of images, and the C-scans generated were closer to the real subsurface world.

2021 ◽  
Vol 13 (5) ◽  
pp. 2950
Author(s):  
Su-Kyung Sung ◽  
Eun-Seok Lee ◽  
Byeong-Seok Shin

Climate change increases the frequency of localized heavy rains and typhoons. As a result, mountain disasters, such as landslides and earthworks, continue to occur, causing damage to roads and residential areas downstream. Moreover, large-scale civil engineering works, including dam construction, cause rapid changes in the terrain, which harm the stability of residential areas. Disasters, such as landslides and earthenware, occur extensively, and there are limitations in the field of investigation; thus, there are many studies being conducted to model terrain geometrically and to observe changes in terrain according to external factors. However, conventional topography methods are expressed in a way that can only be interpreted by people with specialized knowledge. Therefore, there is a lack of consideration for three-dimensional visualization that helps non-experts understand. We need a way to express changes in terrain in real time and to make it intuitive for non-experts to understand. In conventional height-based terrain modeling and simulation, there is a problem in which some of the sampled data are irregularly distorted and do not show the exact terrain shape. The proposed method utilizes a hierarchical vertex cohesion map to correct inaccurately modeled terrain caused by uniform height sampling, and to compensate for geometric errors using Hausdorff distances, while not considering only the elevation difference of the terrain. The mesh reconstruction, which triangulates the three-vertex placed at each location and makes it the smallest unit of 3D model data, can be done at high speed on graphics processing units (GPUs). Our experiments confirm that it is possible to express changes in terrain accurately and quickly compared with existing methods. These functions can improve the sustainability of residential spaces by predicting the damage caused by mountainous disasters or civil engineering works around the city and make it easy for non-experts to understand.


2014 ◽  
Vol 933 ◽  
pp. 584-589
Author(s):  
Zhi Chun Zhang ◽  
Song Wei Li ◽  
Wei Ren Wang ◽  
Wei Zhang ◽  
Li Jun Qi

This paper presents a system in which the cluster devices are controlled by single-chip microcomputers, with emphasis on the cluster management techniques of single-chip microcomputers. Each device in a cluster is controlled by a single-chip microcomputer collecting sample data sent to and driving the device by driving data received from the same cluster management computer through COMs. The cluster management system running on the cluster management computer carries out such control as initial SCM identification, run time slice management, communication resource utilization, fault tolerance and error corrections on single-chip microcomputers. Initial SCM identification is achieved by signal responses between the single-chip microcomputers and the cluster management computer. By using the port priority and the parallelization of serial communications, the systems real-time performance is maximized. The real-time performance can be adjusted and improved by increasing or decreasing COMs and the ports linked to each COM, and the real-time performance can also be raised by configuring more cluster management computers. Fault-tolerant control occurs in the initialization phase and the operational phase. In the initialization phase, the cluster management system incorporates unidentified single-chip microcomputers into the system based on the history information recorded on external storage media. In the operational phase, if an operation error of reading and writing on a single-chip microcomputer reaches a predetermined threshold, the single-chip microcomputer is regarded as serious fault or not existing. The cluster management system maintains accuracy maintenance database on external storage medium to solve nonlinear control of specific devices and accuracy maintenance due to wear. The cluster management system uses object-oriented method to design a unified driving framework in order to enable the implementation of the cluster management system simplified, standardized and easy to transplant. The system has been applied in a large-scale simulation system of 230 single-chip microcomputers, which proves that the system is reliable, real-time and easy to maintain.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2978 ◽  
Author(s):  
Sherong Zhang ◽  
Dejun Hou ◽  
Chao Wang ◽  
Xuexing Cao ◽  
Fenghua Zhang ◽  
...  

Geology uncertainties and real-time construction modification induce an increase of construction risk for large-scale slope in hydraulic engineering. However, the real-time evaluation of slope safety during construction is still an unsettled issue for mapping large-scale slope hazards. In this study, the real-time safety evaluation method is proposed coupling a construction progress with numerical analysis of slope safety. New revealed geological information, excavation progress adjustment, and the support structures modification are updating into the slope safety information model-by-model restructuring. A dynamic connection mapping method between the slope restructuring model and the computable numerical model is illustrated. The numerical model can be generated rapidly and automatically in database. A real-time slope safety evaluation system is developed and its establishing method, prominent features, and application results are briefly introduced in this paper. In our system, the interpretation of potential slope risk is conducted coupling dynamic numerical forecast and monitoring data feedback. The real case study results in a comprehensive real-time safety evaluation application for large slope that illustrates the change of environmental factor and construction state over time.


Geophysics ◽  
1990 ◽  
Vol 55 (9) ◽  
pp. 1166-1182 ◽  
Author(s):  
Irshad R. Mufti

Finite‐difference seismic models are commonly set up in 2-D space. Such models must be excited by a line source which leads to different amplitudes than those in the real data commonly generated from a point source. Moreover, there is no provision for any out‐of‐plane events. These problems can be eliminated by using 3-D finite‐difference models. The fundamental strategy in designing efficient 3-D models is to minimize computational work without sacrificing accuracy. This was accomplished by using a (4,2) differencing operator which ensures the accuracy of much larger operators but requires many fewer numerical operations as well as significantly reduced manipulation of data in the computer memory. Such a choice also simplifies the problem of evaluating the wave field near the subsurface boundaries of the model where large operators cannot be used. We also exploited the fact that, unlike the real data, the synthetic data are free from ambient noise; consequently, one can retain sufficient resolution in the results by optimizing the frequency content of the source signal. Further computational efficiency was achieved by using the concept of the exploding reflector which yields zero‐offset seismic sections without the need to evaluate the wave field for individual shot locations. These considerations opened up the possibility of carrying out a complete synthetic 3-D survey on a supercomputer to investigate the seismic response of a large‐scale structure located in Oklahoma. The analysis of results done on a geophysical workstation provides new insight regarding the role of interference and diffraction in the interpretation of seismic data.


2012 ◽  
Vol 588-589 ◽  
pp. 1320-1323
Author(s):  
Li Xia Wang

This paper takes the virtual reality technology as a core, has established the housing virtual reality roaming display system, Under the premise of the detailed analysis of system architecture, We focus on how to form the terrain database and the scenery three-dimensional database by using the MultiGen Creator, and call OpenGVS through MSVC to carry on the real-time scene control and the method of the complex special effect realization.


2014 ◽  
Vol 631-632 ◽  
pp. 516-520
Author(s):  
Chao Yang ◽  
Shui Yan Dai ◽  
Ling Da Wu ◽  
Rong Huan Yu

The method of view-dependent smoothly rendering of large-scale vector data based on the vector texture on virtual globe is presented. The vector texture is rasterized from the vector data based on view-dependent quadtree LOD. And the vector texture is projected on the top of the terrain. The smooth transition of multi-level texture is realized by adjusting the transparency of texture dynamically based on view range in two processes to avoid texture “popping”. In “IN” process, the texture’s alpha value increases when the view range goes up while In “OUT” process, the texture’s alpha value decreases. the vector texture buffer updating method is used to accelerate the texture fetching based on the least-recently-used algorithm. In the end, the real-time large-scale vector data rendering is implemented on virtual globe. The result shows that this method can real-time render large-scale vector data smoothly.


2021 ◽  
Author(s):  
Yu-Ying Chu ◽  
Jia-Ruei Yang ◽  
Han Tsung Liao ◽  
Bo-Ru Lai

Abstract This study analyzed the outcomes of zygomatico-orbital fracture reconstruction using the real-time navigation system with intraoperative three-dimensional (3D) C-arm computed tomography (CT). Fifteen patients with zygomatico-orbital or isolated orbital/zygoma fractures were enrolled in this prospective cohort. For zygoma reduction, the displacement at five key sutures and the differences between preoperative and intraoperative CT images were compared. For orbital reconstruction, the bilateral orbital volume differences in the anterior, middle, and posterior angles over the medial transitional buttress were measured. Two patients required implant adjustment once after the intraoperative 3D C-arm assessment. On comparing the preoperative and postoperative findings for the zygoma, the average sum of displacement was 19.48 (range, 5.1–34.65) vs. ±1.96 (0–3.95) mm (P < 0.001) and the deviation index was 13.56 (10–24.35) vs. 2.44 (0.6–4.85) (P < 0.001). For the orbit, the mean preoperative to postoperative bilateral orbital volume difference was 3.93 (0.35–10.95) vs. 1.05 (0.12–3.61) mm3 (P <0.001). The mean difference in the bilateral angles at the transition buttress was significantly decreased postoperatively at the middle and posterior one-third. The surgical navigation system with the intraoperative 3D C-arm can effectively improve the accuracy of zygomatico-orbital fracture reconstruction and decrease implant adjustment times.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chuan He ◽  
Lianxiong Liu ◽  
Changhua Hu

In the process of the deformation monitoring for large-scale structure, the mobile vision method is often used. However, most of the existent researches rarely consider the real-time property and the variation of the intrinsic parameters. This paper proposes a real-time deformation monitoring method for the large-scale structure based on a relay camera. First, we achieve the real-time pose-position relationship by using the relay camera and the coded mark points whose coordinates are known. The real-time extrinsic parameters of the measuring camera are then solved according to the constraint relationship between the relay camera and the measuring camera. Second, the real-time intrinsic parameters of the measuring camera are calculated based on the real-time constraint relationship among the extrinsic parameters, the intrinsic parameters, and the fundamental matrix. Finally, the coordinates of the noncoded measured mark points, which are affixed to the surface of the structure, are achieved. Experimental results show that the accuracy of the proposed method is higher than 1.8 mm. Besides, the proposed method also possesses the real-time and automation property.


Sign in / Sign up

Export Citation Format

Share Document