Synergy of polymyxin B, tigecycline and meropenem against carbapenem-resistant Enterobacter cloacae complex isolates

2019 ◽  
Vol 94 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Paola Hoff Alves ◽  
Roberta Taufer Boff ◽  
Afonso Luis Barth ◽  
Andreza Francisco Martins
Author(s):  
Max W Adelman ◽  
Chris W Bower ◽  
Julian E Grass ◽  
Uzma A Ansari ◽  
Elizabeth A Soda ◽  
...  

Abstract Background Carbapenem-resistant Enterobacterales (CRE) are highly antibiotic-resistant bacteria. Whether CRE resistant only to ertapenem among carbapenems (ertapenem “mono-resistant”) represent a unique CRE subset with regards to risk factors, carbapenemase genes, and outcomes is unknown. Methods We analyzed surveillance data from nine CDC Emerging Infections Program (EIP) sites. A case was the first isolation of a carbapenem-resistant Enterobacter cloacae complex, Escherichia coli, Klebsiella aerogenes, K. oxytoca, K. pneumoniae, or K. variicola from a normally sterile site or urine in an EIP catchment area resident in 2016-2017. We compared risk factors, carbapenemase genes, antibiotic susceptibility, and mortality of ertapenem “mono-resistant” cases to “other” CRE cases (resistant to ≥1 carbapenem other than ertapenem), and analyzed risk factors for mortality. Results Of 2009 cases, 1249 (62.2%) were ertapenem mono-resistant and 760 (37.8%) were other CRE. Ertapenem mono-resistant CRE cases were more frequently ≥80 years old (29.1% vs. 19.5%, p<0.0001) and female (67.9% vs 59.0%, p<0.0001). Ertapenem mono-resistant isolates were more likely to be Enterobacter cloacae complex (48.4% vs. 15.4%, p<0.0001) but less likely to be isolated from a normally sterile site (7.1% vs. 11.7%, p<0.01) or have a carbapenemase gene (2.4% vs. 47.4%, p<0.0001). Ertapenem mono-resistance was not associated with 90-day mortality in logistic regression models. Carbapenemase-positive isolates were associated with mortality (odds ratio 1.93, 95% confidence interval 1.30-2.86). Conclusions Ertapenem mono-resistant CRE rarely have carbapenemase genes and have distinct clinical and microbiologic characteristics from other CRE. These findings may inform antibiotic choice and infection prevention practices, particularly when carbapenemase testing is not available.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
David A. Boyd ◽  
Laura F. Mataseje ◽  
Ross Davidson ◽  
Johannes A. Delport ◽  
Jeff Fuller ◽  
...  

ABSTRACT Carbapenem-resistant Enterobacter cloacae complex isolates submitted to a reference laboratory from 2010 to 2015 were screened by PCR for seven common carbapenemase gene groups, namely, KPC, NDM, OXA-48, VIM, IMP, GES, and NMC-A/IMI. Nineteen of the submitted isolates (1.7%) were found to harbor Ambler class A bla NMC-A or bla IMI-type carbapenemases. All 19 isolates were resistant to at least one carbapenem but susceptible to aminoglycosides, trimethoprim-sulfamethoxazole, tigecycline, and ciprofloxacin. Most isolates (17/19) gave positive results with the Carba-NP test for phenotypic carbapenemase detection. Isolates were genetically diverse by pulsed-field gel electrophoresis macrorestriction analysis, multilocus sequence typing, and hsp60 gene analysis. The genes were found in various Enterobacter cloacae complex species; however, bla NMC-A was highly associated with Enterobacter ludwigii. Whole-genome sequencing and bioinformatics analysis revealed that all NMC-A (n = 10), IMI-1 (n = 5), and IMI-9 (n = 2) producers harbored the carbapenemase gene on EludIMEX-1-like integrative mobile elements (EcloIMEXs) located in the identical chromosomal locus. Two novel genes, bla IMI-5 and bla IMI-6, were harbored on different IncFII-type plasmids. Enterobacter cloacae complex isolates harboring bla NMC-A/IMI-type carbapenemases are relatively rare in Canada. Though mostly found integrated into the chromosome, some variants are located on plasmids that may enhance their mobility potential.


2020 ◽  
Vol 75 (9) ◽  
pp. 2609-2615 ◽  
Author(s):  
Yawei Zhang ◽  
Chunjiang Zhao ◽  
Qi Wang ◽  
Xiaojuan Wang ◽  
Hongbin Chen ◽  
...  

Abstract Background SPR206 is a novel polymyxin analogue. Activity against clinical isolates is little documented. Methods A collection of 200 MDR, carbapenem-resistant, tigecycline-resistant, colistin-resistant and non-MDR clinical isolates of Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae and Stenotrophomonas maltophilia was obtained from 50 centres across China (2016–17). All isolates were derived from respiratory tract, urine and blood samples. Strains were purposely selected on the basis of phenotypes, genotypes and specimen origins. MICs of SPR206 and other antimicrobials were determined. Results SPR206 was active against all bacteria tested except colistin-resistant isolates. The MIC50/90 values of SPR206 for colistin-resistant strains were comparable to known polymyxins (16/128 versus 8/128 mg/L). SPR206 exhibited potent activity against colistin-susceptible OXA-producing A. baumannii (MIC50/90 = 0.064/0.125 mg/L), NDM-producing Enterobacteriaceae (MIC50/90 = 0.125/0.25 mg/L) and KPC-2-producing Enterobacteriaceae (MIC50/90 = 0.125/0.5 mg/L). In fact, SPR206 was the most potent agent tested, with 2- to 4-fold lower MICs than colistin and polymyxin B for A. baumannii, P. aeruginosa and Enterobacteriaceae. Additionally, MIC values of SPR206 (MIC50/90 = 0.064/0.125 mg/L) were 16- to 32-fold lower than those of tigecycline (MIC50/90 = 2/2 mg/L) for tigecycline-susceptible carbapenem-resistant A. baumannii. Conclusions SPR206 showed good in vitro activity against MDR, tigecycline-resistant and non-MDR clinical isolates of Gram-negative pathogens. SPR206 also exhibited superior potency to colistin and polymyxin B, with 2- to 4-fold lower MIC50/90 values.


2018 ◽  
Vol 13 ◽  
pp. 184-189 ◽  
Author(s):  
Elsa De La Cadena ◽  
Adriana Correa ◽  
Juan Sebastián Muñoz ◽  
Laura J. Rojas ◽  
Cristhian Hernández-Gómez ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingjing Chen ◽  
Sufei Tian ◽  
Hua Nian ◽  
Ruixuan Wang ◽  
Fushun Li ◽  
...  

Abstract Background Carbapenem-resistant Enterobacter cloacae complex (CREC) is a new emerging threat to global public health. The objective of the study was to investigate the clinical characteristics and molecular epidemiology of CREC infections in the medical center of northeast China. Methods Twenty-nine patients were infected/colonized with CREC during a ten-year period (2010–2019) by WHONET analysis. Antibiotic susceptibilities were tested with VITEK 2 and micro broth dilution method (for polymyxin B and tigecycline). Carbapenemase encoding genes, β-lactamase genes, and seven housekeeping genes for MLST were amplified and sequenced for 18 cryopreserved CREC isolates. Maximum likelihood phylogenetic tree was built with the concentrated sequences to show the relatedness between the 18 isolates. Results There was a rapid increase in CREC detection rate during the ten-year period, reaching 8.11% in 2018 and 6.48% in 2019. The resistance rate of CREC isolates to imipenem and meropenem were 100.0 and 77.8%, however, they showed high sensitivity to tigecycline, polymyxin B and amikacin. The 30-day crude mortality of CREC infection was 17.4%, indicating that it may be a low-virulence bacterium. Furthermore, molecular epidemiology revealed that ST93 was the predominant sequence type followed by ST171 and ST145, with NDM-1 and NDM-5 as the main carbapenemase-encoding genes. Moreover, E. hormaechei subsp. steigerwaltii and E. hormaechei subsp. oharae were the main species, which showed different resistance patterns. Conclusion Rising detection rate of CREC was observed in a tertiary hospital, which showed heterogeneity in drug resistance patterns, resistance genes, and MLST types. Effective infection prevention and control measures should be taken to reduce the spread of CREC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pegah Kananizadeh ◽  
Satoshi Oshiro ◽  
Shin Watanabe ◽  
Shu Iwata ◽  
Kyoko Kuwahara-Arai ◽  
...  

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S108-S109
Author(s):  
Max W Adelman ◽  
Chris W Bower ◽  
Julian E Grass ◽  
Uzma Ansari ◽  
Isaac See ◽  
...  

Abstract Background Carbapenem-resistant Enterobacterales (CRE) are highly antibiotic-resistant bacteria. Whether CRE resistant only to ertapenem among carbapenems (ertapenem mono-resistant) represent a unique CRE subset with regards to risk factors, carbapenemase genes, and outcomes is unknown. Methods We analyzed laboratory- and population-based surveillance data from nine sites participating in CDC’s Emerging Infections Program (EIP). We defined an incident case as the first isolation of Enterobacter cloacae complex, Escherichia coli, Klebsiella aerogenes, K. oxytoca, K. pneumoniae, or K. variicola resistant to doripenem, ertapenem, imipenem, or meropenem (determined at clinical laboratory) from a normally sterile site or urine identified from a resident of the EIP catchment area in 2016-2017. We compared risk factors, carbapenemase genes (determined via polymerase chain reaction at CDC), and mortality of cases with ertapenem “mono-resistant” to “other” CRE (resistant to ≥ 1 carbapenem other than ertapenem). We additionally conducted survival analysis to determine the effect of ertapenem mono-resistant status and isolate source (sterile vs. urine) on survival. Results Of 2009 cases, 1249 (62.2%) were ertapenem mono-resistant and 760 (37.8%) were other CRE (Figure 1). Ertapenem mono-resistant CRE cases were more frequently ≥ 80 years old (29.1% vs. 19.5%, p< 0.0001), female (67.9% vs 59.0%, p< 0.0001), and white (62.6% vs. 45.1%, p< 0.0001). Ertapenem mono-resistant isolates were more likely than other CRE to be Enterobacter cloacae complex (48.4% vs. 15.4%, p< 0.0001) but less likely to be isolated from a normally sterile site (7.1% vs. 11.7%, p< 0.01) or have a carbapenemase gene (2.4% vs. 47.4%, p< 0.0001) (Figure 2). Ertapenem mono-resistance was not associated with difference in 90-day mortality (unadjusted odds ratio [OR] 0.82, 95% confidence interval [CI] 0.63-1.06) in logistic models or survival analysis (Figure 3). Figure 1. Flow diagram of carbapenem-resistant Enterobacterales cases included in analysis, 2017-2018. CRE, carbapenem-resistant Enterobacterales; MIC, minimum inhibitory concentration. Ertapenem mono-resistant CRE are only resistant to ertapenem (among carbapenems). Other CRE are resistant to ≥1 carbapenem other than ertapenem. We excluded isolates that (1) had no interpretable MICs for any carbapenem, (2) were only tested against ertapenem, (3) had unknown death status, or (4) were not associated with patient’s first incident case. Figure 2. Proportion of ertapenem mono-resistant carbapenem-resistant Enterobacterales (CRE) vs. other CRE isolates with specific carbapenemase genes. KPC, Klebsiella pneumoniae carbapenemase; NDM, New Delhi metallo-ß-lactamase; OXA, oxacillinase. Ertapenem mono-resistant carbapenem-resistant Enterobacterales (CRE) are only resistant to ertapenem (among carbapenems). Other CRE are resistant to ≥1 carbapenem other than ertapenem. Testing via reverse transcriptase polymerase chain reaction. Figure 3. Survival analysis comparing patients with carbapenem-resistant Enterobacterales (CRE) that are ertapenem mono-resistant to other CRE (i.e., resistant to ≥1 carbapenem other than ertapenem), either total (A) or stratified by isolate site (B). Ertapenem mono-resistant) isolates were not associated with decreased mortality, and sterile isolate source (i.e., non-urinary isolates) was associated with increased mortality regardless of ertapenem mono-resistance. Conclusion Ertapenem mono-resistant CRE rarely have carbapenemase genes and have distinct clinical and microbiologic characteristics compared to other CRE. These findings may inform antibiotic choice particularly when testing for carbapenemases is not readily available. Disclosures All Authors: No reported disclosures


Sign in / Sign up

Export Citation Format

Share Document