Pharmacodynamics of once- versus twice-daily dosing of nebulized amikacin in an in vitro Hollow-Fiber Infection Model against 3 clinical isolates of Pseudomonas aeruginosa

2021 ◽  
Vol 100 (2) ◽  
pp. 115329
Author(s):  
Aaron James Heffernan ◽  
Fekade Bruck Sime ◽  
Saiyuri Naicker ◽  
Katherine Andrews ◽  
David Ellwood ◽  
...  
2020 ◽  
Vol 19 (8) ◽  
pp. 1731-1736
Author(s):  
Huirong Li ◽  
Wei Jiang ◽  
Xiaoshuang He ◽  
Mengting Chen

Purpose: To investigate the synergistic antimicrobial effects of ciprofloxacin and D-tyrosine against drug-resistant bacteria.Method: The antimicrobial effects of ciprofloxacin and D-tyrosine on clinical isolates of multidrugresistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) no. 3556 were determined in vitro based on time-kill curve, and in vivo in P. aeruginosa-zebrafish infection model. Furthermore, 30 clinical isolates of multidrug-resistant P. aeruginosa were used in vitro to ascertain the synergistic effect of the two agents.Results: Combined use of ciprofloxacin and D-tyrosine produced synergistic effects against the clinical isolate of P. aeruginosa no. 3556 in vitro and in vivo. Synergism occurred in 96.67 % (95 % CI, range 83.33 - 99.41 %) of the clinical isolates, and ciprofloxacin dose was reduced in 90 % (95 % CI, range 74.38 - 96.54 %) of the clinical isolates in vitro.Conclusion: These preliminary results suggest that the combination of ciprofloxacin and D-tyrosine is a promising therapeutic strategy against MDR P. aeruginosa infections. Keywords: Ciprofloxacin, D-tyrosine, Synergistic, P. aeruginosa, Zebrafish infection model, Time-killing curve


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Arnold Louie ◽  
Michael Maynard ◽  
Brandon Duncanson ◽  
Jocelyn Nole ◽  
Michael Vicchiarelli ◽  
...  

ABSTRACT Fosfomycin is the only expoxide antimicrobial and is currently under development in the United States as an intravenously administered product. We were interested in identifying the exposure indices most closely linked to its ability to kill bacterial cells and to suppress amplification of less susceptible subpopulations. We employed the hollow fiber infection model for this investigation and studied wild-type strain Pseudomonas aeruginosa PAO1. Because of anticipated rapid resistance emergence, we shortened the study duration to 24 h but sampled the system more intensively. Doses of 12 and 18 g/day and schedules of daily administration, administration every 8 h, and administration by continuous infusion for each daily dose were studied. We measured fosfomycin concentrations (by liquid chromatography-tandem mass spectrometry), the total bacterial burden, and the burden of less susceptible isolates. We applied a mathematical model to all the data simultaneously. There was a rapid emergence of resistance with all doses and schedules. Prior to resistance emergence, an initial kill of 2 to 3 log 10 (CFU/ml) was observed. The model demonstrated that the area under the concentration-time curve/MIC ratio was linked to total bacterial kill, while the time that the concentration remained above the MIC (or, equivalently, the minimum concentration/MIC ratio) was linked to resistance suppression. These findings were also seen in other investigations with Enterobacteriaceae ( in vitro systems) and P. aeruginosa (murine system). We conclude that for serious infections with high bacterial burdens, fosfomycin may be of value as a new therapeutic and may be optimized by administering the agent as a continuous or prolonged infusion or by use of a short dosing interval. For indications such as ventilator-associated bacterial pneumonia, it may be prudent to administer fosfomycin as part of a combination regimen.


2021 ◽  
Author(s):  
Minyon L Avent ◽  
Kate L. McCarthy ◽  
Fekade Sime ◽  
saiyuri naicker ◽  
Aaron James Heffernan ◽  
...  

Debate continues as to the role of combination antibiotic therapy for the management of Pseudomonas aeruginosa infections. We studied extent of bacterial killing and resistance emergence of meropenem and amikacin as monotherapy and as a combination therapy against susceptible and resistant P. aeruginosa isolates from bacteremic patients using the dynamic in vitro hollow-fiber infection model. Three P. aeruginosa isolates (meropenem MICs 0.125, 0.25 & 64 mg/L) were used simulating bacteremia with an initial inoculum ~ 1×105 CFU/mL and the expected pharmacokinetics of meropenem and amikacin in critically ill patients. For isolates susceptible to amikacin and meropenem (isolates 1 and 2), the rate of bacterial killing was increased with the combination regimen when compared with monotherapy of either antibiotic. Both the combination and meropenem monotherapy were able to sustain bacterial killing throughout the seven-day treatment course, whereas regrowth of bacteria occurred with amikacin monotherapy after 12 hours. For the meropenem-resistant P. aeruginosa isolate (isolate 3), only the combination regimen demonstrated bacterial killing. Given that tailored antibiotic regimens can maximize potential synergy against some isolates, future studies should explore the benefit of combination therapy against resistant P. aeruginosa.


2020 ◽  
Vol 7 (11) ◽  
Author(s):  
Donna Carr ◽  
Zufei Zhang ◽  
Qian Si ◽  
Fred Racine ◽  
Jing Chen Xiao ◽  
...  

Abstract Our hollow-fiber infection model simulated the projected steady-state pharmacokinetics of ceftolozane and tazobactam in lung epithelial lining fluid of patients with pneumonia receiving 3 g of ceftolozane/tazobactam every 8 hours. Results confirmed the previously established in vitro activity of ceftolozane/tazobactam at and above approved breakpoints against multidrug-resistant Pseudomonas aeruginosa, regardless of Pseudomonas-derived cephalosporinase allele.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Aaron J. Heffernan ◽  
Fekade B. Sime ◽  
Derek S. Sarovich ◽  
Michael Neely ◽  
Yarmarly Guerra-Valero ◽  
...  

ABSTRACT Given that aminoglycosides, such as amikacin, may be used for multidrug-resistant Pseudomonas aeruginosa infections, optimization of therapy is paramount for improved treatment outcomes. This study aims to investigate the pharmacodynamics of different simulated intravenous amikacin doses on susceptible P. aeruginosa to inform ventilator-associated pneumonia (VAP) and sepsis treatment choices. A hollow-fiber infection model with two P. aeruginosa isolates (MICs of 2 and 8 mg/liter) with an initial inoculum of ∼108 CFU/ml was used to test different amikacin dosing regimens. Three regimens (15, 25, and 50 mg/kg) were tested to simulate a blood exposure, while a 30 mg/kg regimen simulated the epithelial lining fluid (ELF) for potential respiratory tract infection. Data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Whole-genome sequencing was used to identify mutations associated with resistance emergence. While bacterial density was reduced by >6 logs within the first 12 h in simulated blood exposures following this initial bacterial kill, there was amplification of a resistant subpopulation with ribosomal mutations that were likely mediating amikacin resistance. No appreciable bacterial killing occurred with subsequent doses. There was less (<5 log) bacterial killing in the simulated ELF exposure for either isolate tested. Simulation studies suggested that a dose of 30 and 50 mg/kg may provide maximal bacterial killing for bloodstream and VAP infections, respectively. Our results suggest that amikacin efficacy may be improved with the use of high-dose therapy to rapidly eliminate susceptible bacteria. Subsequent doses may have reduced efficacy given the rapid amplification of less-susceptible bacterial subpopulations with amikacin monotherapy.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Fekade Bruck Sime ◽  
Adam Johnson ◽  
Sarah Whalley ◽  
Anahi Santoyo-Castelazo ◽  
A. Bruce Montgomery ◽  
...  

ABSTRACT There has been a resurgence of interest in aerosolization of antibiotics for treatment of patients with severe pneumonia caused by multidrug-resistant pathogens. A combination formulation of amikacin-fosfomycin is currently undergoing clinical testing although the exposure-response relationships of these drugs have not been fully characterized. The aim of this study was to describe the individual and combined antibacterial effects of simulated epithelial lining fluid exposures of aerosolized amikacin and fosfomycin against resistant clinical isolates of Pseudomonas aeruginosa (MICs of 16 mg/liter and 64 mg/liter) and Klebsiella pneumoniae (MICs of 2 mg/liter and 64 mg/liter) using a dynamic hollow-fiber infection model over 7 days. Targeted peak concentrations of 300 mg/liter amikacin and/or 1,200 mg/liter fosfomycin as a 12-hourly dosing regimens were used. Quantitative cultures were performed to describe changes in concentrations of the total and resistant bacterial populations. The targeted starting inoculum was 108 CFU/ml for both strains. We observed that neither amikacin nor fosfomycin monotherapy was bactericidal against P. aeruginosa while both were associated with rapid amplification of resistant P. aeruginosa strains (about 108 to 109 CFU/ml within 24 to 48 h). For K. pneumoniae, amikacin but not fosfomycin was bactericidal. When both drugs were combined, a rapid killing was observed for P. aeruginosa and K. pneumoniae (6-log kill within 24 h). Furthermore, the combination of amikacin and fosfomycin effectively suppressed growth of resistant strains of P. aeruginosa and K. pneumoniae. In conclusion, the combination of amikacin and fosfomycin was effective at maximizing bacterial killing and suppressing emergence of resistance against these clinical isolates.


2019 ◽  
Vol 75 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Odel Soren ◽  
Ardeshir Rineh ◽  
Diogo G Silva ◽  
Yuming Cai ◽  
Robert P Howlin ◽  
...  

Abstract Objectives The cephalosporin nitric oxide (NO)-donor prodrug DEA-C3D (‘DiEthylAmin-Cephalosporin-3′-Diazeniumdiolate’) has been shown to initiate the dispersal of biofilms formed by the Pseudomonas aeruginosa laboratory strain PAO1. In this study, we investigated whether DEA-C3D disperses biofilms formed by clinical cystic fibrosis (CF) isolates of P. aeruginosa and its effect in combination with two antipseudomonal antibiotics, tobramycin and colistin, in vitro. Methods β-Lactamase-triggered release of NO from DEA-C3D was confirmed using a gas-phase chemiluminescence detector. MICs for P. aeruginosa clinical isolates were determined using the broth microdilution method. A crystal violet staining technique and confocal laser scanning microscopy were used to evaluate the effects of DEA-C3D on P. aeruginosa biofilms alone and in combination with tobramycin and colistin. Results DEA-C3D was confirmed to selectively release NO in response to contact with bacterial β-lactamase. Despite lacking direct, cephalosporin/β-lactam-based antibacterial activity, DEA-C3D was able to disperse biofilms formed by three P. aeruginosa clinical isolates. Confocal microscopy revealed that DEA-C3D in combination with tobramycin produces similar reductions in biofilm to DEA-C3D alone, whereas the combination with colistin causes near complete eradication of P. aeruginosa biofilms in vitro. Conclusions DEA-C3D is effective in dispersing biofilms formed by multiple clinical isolates of P. aeruginosa and could hold promise as a new adjunctive therapy to patients with CF.


2021 ◽  
pp. 1-8
Author(s):  
Soheir A.A. Hagras ◽  
Alaa El-Dien M.S. Hosny ◽  
Omneya M. Helmy ◽  
Mounir M. Salem-Bekhit ◽  
Faiyaz Shakeel ◽  
...  

This study investigated the effect of cefepime at sub-minimum inhibitory concentrations (sub-MICs) on in vitro biofilm formation (BF) by clinical isolates of Pseudomonas aeruginosa. The effect of cefepime at sub-MIC levels (½–1/256 MIC) on in vitro BF by six clinical isolates of P. aeruginosa was phenotypically assessed following 24 and 48 h of challenge using the tissue culture plate (TCP) assay. Quantitative real-time polymeric chain reaction (qRT-PCR) was employed to observe the change in expression of three biofilm-related genes, namely, a protease-encoding gene (lasA), fimbrial protein-encoding gene (cupA1), and alginate-encoding gene (algC), in a weak biofilm-producing strain of P. aeruginosa following 24 and 48 h of challenge with sub-MICs of cefepime. The BF morphology in response to cefepime was imaged using scanning electron microscopy (SEM). The TCP assay showed strain-, time-, and concentration-dependent changes in in vitro BF in P. aeruginosa following challenge with sub-MICs of cefepime, with a profound increase in strains with inherently no or weak biofilm-producing ability. RT-PCR revealed time-dependent upregulation in the expression of the investigated genes following challenge with ½ and ¼ MIC levels, as confirmed by SEM. Cefepime at sub-MICs could upregulate the expression of BF-related genes and enhance BF by P. aeruginosa clinical isolates.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Mojgan Sabet ◽  
Ziad Tarazi ◽  
David C. Griffith

ABSTRACTWe have evaluated the activity of meropenem-vaborbactam against clinical isolates ofPseudomonas aeruginosaandAcinetobacter baumanniiin a neutropenic mouse thigh infection model. Data show that meropenem-vaborbactam regimens equivalent to 3-h infusions every 8 h with 2 g meropenem and 2 g vaborbactam produced bacterial killing against strains with MICs of 2 to 16 mg/liter and suggests that this combination may have utility in the treatment of infections caused byP. aeruginosaandA. baumannii.


Sign in / Sign up

Export Citation Format

Share Document