On the reduction of the non-diamond phase in nanocrystalline CVD diamond films

2009 ◽  
Vol 18 (5-8) ◽  
pp. 726-729 ◽  
Author(s):  
Z. Remes ◽  
A. Kromka ◽  
M. Vanecek ◽  
S. Ghodbane ◽  
D. Steinmüller-Nethl
2015 ◽  
Vol 1728 ◽  
Author(s):  
Stefano Gay ◽  
Giacomo Reina ◽  
Ilaria Cianchetta ◽  
Emanuela Tamburri ◽  
Mariglen Angjellari ◽  
...  

ABSTRACTWe report here on the chemical methodologies that are being settled in our labs for the insertion in diamond of foreign atoms and consequent creation of fluorescent defects. The inclusion of Si, Cr, Ge, able to produce color centers, is directly obtained during the process of diamond synthesis by means of a CVD technique. The deposition of the diamond films takes place on substrates of different nature, treated following procedures specifically settled to control the insertion of the different species. The photoluminescence emission from a series of diamond samples grown on different substrates (Si, Ge and Ti) has been investigated and is discussed with reference to the morphological/structural features of the diamond phase and to the experimental procedures adopted for substrate preparation.


2015 ◽  
Vol 33 (4) ◽  
pp. 799-805 ◽  
Author(s):  
Anna Dychalska ◽  
Piotr Popielarski ◽  
Wojciech Franków ◽  
Kazimierz Fabisiak ◽  
Kazimierz Paprocki ◽  
...  

AbstractRaman spectroscopy is a most often used standard technique for characterization of different carbon materials. In this work we present the Raman spectra of polycrystalline diamond layers of different quality, synthesized by Hot Filament Chemical Vapor Deposition method (HF CVD). We show how to use Raman spectroscopy for the analysis of the Raman bands to determine the structure of diamond films as well as the structure of amorphous carbon admixture. Raman spectroscopy has become an important technique for the analysis of CVD diamond films. The first-order diamond Raman peak at ca. 1332 cm−1 is an unambiguous evidence for the presence of diamond phase in the deposited layer. However, the existence of non-diamond carbon components in a CVD diamond layer produces several overlapping peaks in the same wavenumber region as the first order diamond peak. The intensities, wavenumber, full width at half maximum (FWHM) of these bands are dependent on quality of diamond layer which is dependent on the deposition conditions. The aim of the present work is to relate the features of diamond Raman spectra to the features of Raman spectra of non-diamond phase admixture and occurrence of other carbon structures in the obtained diamond thin films.


2005 ◽  
Vol 202 (11) ◽  
pp. 2171-2176 ◽  
Author(s):  
A. Hikavyy ◽  
P. Clauws ◽  
W. Deferme ◽  
G. Bogdan ◽  
K. Haenen ◽  
...  
Keyword(s):  

2016 ◽  
Vol 1136 ◽  
pp. 573-578 ◽  
Author(s):  
Su Lin Chen ◽  
Bin Shen ◽  
Fang Hong Sun

The present study reports the influence of graphene layers on the tribological performance of CVD diamond films when they are used as the solid lubricants. Friction tests are conducted on a ball-on-plate friction tester, where the stainless steel is used as the counterpart material. The CVD diamond film sample is a typical microcrystalline diamond (MCD) coating which is deposited on a flat tungsten carbide substrate using the hot filament chemical vapor deposition method (HFCVD). Besides the MCD sample, a polished MCD film (pMCD) and a polished tungsten carbide (pWC) are also adopted in frictional tests, aiming at illustrating the influence of the surface morphology, as well as the physical property, of the sample on the lubricative effect of graphene layers. The experimental results show that graphene layers can effectively reduce the coefficient of friction (COF), regardless of the samples. The MCD sample presents the lowest stable COF, which is 0.13, in dry sliding period when the graphene flakes are sparyed on the sliding interface; while the pMCD and pWC samples exhibit slightly higher COFs, which are 0.16 and 0.18, respectively. Comparatively, the COFs of these three samples obtained in dry sliding process without graphene are 0.20, 0.25 and 0.64. In additon, the MCD sample exhibits a much longer stable dry slidng process which is more than 5000 cycles. Comparatively, the other two tribo-pairs only exhibit a stable low-COF dry sliding period for around 2000 cycles. The reduction of COF could be attributed to the graphene flakes adhered on the sliding interface. It forms a layer of solid lubricative film with extremely low shear strength and significantly decreases the interactions between two contacted surfaces. The rugged surface of the MCD film provides sufficient clogging locations for graphene flakes, which allows the generated lubricative film enduring a long sliding duration. It can be arrived from this study that the tribological properties of the MCD film could be enhanced by simply adoping graphene layers as a solid lubricant. Furthermore, an improved performance of a variety of MCD coated cutting tools or mechanical components could be expected when they are utilized with graphene layers.


1998 ◽  
Vol 169 (1) ◽  
pp. R5-R6 ◽  
Author(s):  
N. B. Wong ◽  
G. Q. Li ◽  
S. M. Zhu ◽  
S. C. Tjong ◽  
S. T. Lee
Keyword(s):  
Ion Beam ◽  

2003 ◽  
Vol 216 (1-4) ◽  
pp. 106-112 ◽  
Author(s):  
Min-Seung Chun ◽  
Tokuyuki Teraji ◽  
Toshimichi Ito

2017 ◽  
Vol 79 ◽  
pp. 108-111 ◽  
Author(s):  
A. Boussadi ◽  
A. Tallaire ◽  
O. Brinza ◽  
M.A. Pinault-Thaury ◽  
J. Achard

2000 ◽  
Vol 132 (2-4) ◽  
pp. 315-321 ◽  
Author(s):  
Alexander G. Fitzgerald ◽  
Yongchang Fan ◽  
Phillip John ◽  
Clare E. Troupe ◽  
John I. B. Wilson ◽  
...  
Keyword(s):  

1990 ◽  
Vol 5 (8) ◽  
pp. 1591-1594 ◽  
Author(s):  
A. V. Hetherington ◽  
C. J. H. Wort ◽  
P. Southworth

The crystalline perfection of microwave plasma assisted chemical vapor deposited (MPACVD) diamond films grown under various conditions has been examined by TEM. Most CVD diamond films thus far reported contain a high density of defects, predominantly twins and stacking faults on {111} planes. We show that under appropriate growth conditions, these planar defects are eliminated from the center of the crystallites, and occur only at grain boundaries where the growing crystallites meet.


Sign in / Sign up

Export Citation Format

Share Document